
Design and Implementation of an
Intent-based Blockchain Selection

Framework

Patrick Widmer
Zürich, Switzerland

Student ID: 13-786-009

Supervisor: Eder J. Scheid, Bruno B. Rodrigues,
Prof. Dr. Burkhard Stiller

Date of Submission: January 8, 2020

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

In den letzten Jahren hat die Bekanntheit von Kryptowährungen stetig zugenommen. Die
zugrundeliegende Technologie, ein verteiltes Kontenbuch, wird als Blockchain bezeichnet.
Heute existieren zahlreiche Blockchainimplementierungen. Die Auswahl einer geeigneten
Implementierung für eine bestimmte Anwendung ist komplex. Kürzlich wurden Ansätze
vorgeschlagen, die diesen Prozess automatisieren. Diese Ansätze setzen auf policy-basierte
Verwaltung. Die Formulierung dieser Policies setzt ein technisches Verständnis der zugrun-
deliegenden Implementierung voraus. Deshalb ist das Ziel dieser Arbeit die Entwicklung
eines Prototyps, der die bestehende Lösung erweitert und die zugrundeliegenden Imple-
mentierungsdetails abstrahiert. Der Ansatz ermöglicht die Formulierung von Intents in
natürlicher Sprache. Eine Zustandsmaschine wird verwendet um diese Intents in Aus-
wahlpolicies umzuwandeln. Dieser Ansatz basiert auf früheren Lösungen aus dem Bereich
der Netzwerkverwaltung. Die Resultate der Performanzauswertung des Prototyps zeigen
einen vernachlässigbaren Mehraufwand. Die Anforderungen an die Blockchaintechnolo-
gie von Benutzern wird anhand einer Umfrage untersucht. Die Resultate dieser Umfrage
zeigen, dass technische wie nicht-technische Benutzer gleichermassen von einem Intent-
basierten Ansatz profitieren. Der entwickelte Protoyp unterstützt Parameter, die in den
Auswahlpolicies nicht verfügbar sind. Die Implementierung des Policysystems muss er-
weitert werden um diese zusätzlichen Parameter zu unterstützen.

In the last years, cryptocurrencies have become increasingly popular. The underlying
technology a distributed ledger is referred to as a blockchain. Nowadays, there is a wide
variety of blockchain implementations. The selection of a suitable implementation for
a particular application is complex. Recently, approaches have been proposed to auto-
mate this process. Specifically, these approaches are relying on policy-based management.
However, the specification of these policies still requires a technical understanding of the
underlying implementation aspects. Therefore, the goal of this thesis is the development
of a prototype that extends the existing solution to abstract these underlying imple-
mentation details. The approach allows the specification of intents in natural language.
Further, a state-machine-based refinement technique is proposed to transform these in-
tents into low-level blockchain selection policies. It is inspired by previous approaches
from network management. The results of the performance evaluation of the prototype
implementation show a negligible overhead. Further, the blockchain usage requirements
of users are assessed in a survey. The results of the survey suggest that technical and
non-technical individuals benefit from an intent-based approach equally. The developed
prototype supports parameters that are not available in the low-level policies. Therefore,
the implementation of the policy system has to be extended to support the remaining
options.

i

ii

Acknowledgments

I am very grateful to a number of people who have helped me, directly or indirectly, with
my work on this thesis. Without their continuous support, this work would not have been
possible.

First and foremost, I would like to thank Eder John Scheid for his enduring support,
technical feedback, and experienced guidance throughout this thesis. I would also like to
thank Bruno Bastos Rodrigues for his valuable feedback. Moreover, I would like to thank
Prof. Dr. Burkhard Stiller for the opportunity to work on this thesis.

I want to thank all the CSG members for their feedback during the midterm presentation
and the participation in the survey. I would also like to thank all the students of the
Blockchain CAS and the Blockchains and Overlay Networks course that participated in
the survey. Finally, I would like to thank all the remaining participants of the survey.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 3

2.1 Blockchain . 3

2.1.1 Consensus Mechanism . 3

2.1.2 Deployment Type . 4

2.1.3 Performance . 5

2.1.4 Transaction Costs . 5

2.2 Policy-based Network Management (PBNM) 5

2.2.1 PBNM Architecture . 6

2.3 Intent-based Networking (IBN) . 7

2.4 Policy Refinement . 8

2.5 Policy-based Blockchain Agnostic Framework 8

v

vi CONTENTS

3 Related Work 11

3.1 Network Management . 11

3.2 Cloud Management . 12

3.3 Discussion . 12

4 Intent Refinement Approach 15

4.1 Design . 15

4.1.1 Intent Refinement . 15

4.1.2 Intent Grammar . 16

4.1.3 Intent Parameters . 16

4.1.4 Intent Refinement Toolkit (IRTK) 20

4.1.5 Intent Parsing . 21

4.1.6 Intent Translation . 24

4.1.7 Intent Validation . 25

4.2 Implementation . 25

4.2.1 Intent Refinement . 26

4.2.2 Intent Parsing . 27

4.2.3 Intent Translation . 30

4.2.4 Intent Validation . 31

4.2.5 Intent . 32

4.2.6 Policy . 33

5 Evaluation 35

5.1 Performance Testing . 35

5.1.1 Test System . 35

5.1.2 Results . 36

5.1.3 Discussion . 41

5.2 Survey on Blockchain Usage Requirements 42

5.2.1 Discussion . 48

CONTENTS vii

6 Summary and Future Work 51

6.1 Future Work . 52

Abbreviations 57

Glossary 59

List of Figures 59

List of Tables 62

A Questionnaire 65

B Installation Guidelines 71

B.1 Dependencies . 71

B.2 Database . 72

B.3 Configuration . 72

B.4 Tests . 73

B.5 Usage . 73

B.6 Troubleshooting . 74

C Contents of the CD 77

viii CONTENTS

Chapter 1

Introduction

In 2009, the Bitcoin whitepaper was released [25]. It introduced an electronic cash system.
Bitcoin does not rely on a central entity to coordinate the system. Instead, it records
transactions in a decentralized manner using a peer-to-peer network. The underlying
technology, a distributed ledger is known as a blockchain. The system is maintained by
nodes in the network, which validate incoming transactions and compete against each
other to collect a reward provided by the protocol.

Since then, many blockchains have been developed [2]. However, the underlying proto-
cols differ in specific design and implementation decisions. These characteristics have
implications for different applications and use cases. Therefore, there is no blockchain im-
plementation that suits every use case. Initially, the blockchain technology was used for
cryptocurrencies in the financial industry. Nowadays, blockchains are applied in various
industries, such as the pharmaceutical industry [4]. Moreover, governments are experi-
menting with the technology to develop electronic voting solutions [39].

1.1 Motivation

In the last years, blockchain technology has gained a lot of popularity. Initially, mainly
technical individuals have worked with blockchain technology. However, the media cov-
erage of blockchains has attracted a wide range of users. Still, to interact with these
blockchain platforms users are required to understand underlying technical aspects, such
as transaction models and private key mechanisms [12].

Therefore, the selection of a blockchain is becoming a limiting factor in the adoption
of blockchain technology. There are approaches that try to automate the process and
support users in selecting a well-suited blockchain implementation. For example, there
is an approach that is inspired by policy-based management which has been already ap-
plied to network management [32]. The approach defines policies or blockchain selection
rules that define a set of criteria to select a blockchain based on these conditions. How-
ever, the specification of policies still requires a technical understanding of the blockchain
implementations.

1

2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

This thesis explores an intent-based approach for blockchain selection. It introduces an
additional layer of abstraction to the existing policy-based blockchain selection. Simi-
larly, to intent-based networking for policy-based network management. The approach
allows the specification of intents (i.e., high-level abstract policies) in natural language.
These intents are then refined into corresponding low-level policies. The advantage of this
approach is that it abstracts low-level implementation details.

1.3 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 provides information
on blockchain characteristics, policy- and intent-based network management and policy
refinement. Moreover, it also discusses the concept of a policy-based blockchain agnostic
framework. Chapter 3 discusses intent-based management approaches in various contexts.
The design and implementation of a prototype is discussed in Chapter 4. Chapter 5
provides the results of the performance testing of the prototype. Furthermore, it presents
and discusses the results of a survey on the blockchain usage requirements. Finally,
Chapter 6 summarizes the most important findings and provides an outlook for potential
extensions of this work.

Chapter 2

Background

This chapter describes the main concepts involved in this thesis. Section 2.1 introduces
blockchains and lists the parameters and mechanisms that support them. Then, in Sec-
tion 2.2 the Policy-based Network Management (PBNM) concept is presented with policy
format examples. The core concept of this thesis, Intent-based Networking (IBN), is de-
scribed in Section 2.3. Techniques to refine abstract high-level policies (i.e., intents) into
low-level policies are presented in Section 2.4. Finally, Section 2.5 describes a Policy-based
Blockchain Agnostic Framework (PBBAF) and its components.

2.1 Blockchain

A blockchain is a distributed append-only immutable ledger [25]. It consists of an ordered,
linear list of blocks. It is replicated across all the nodes of the network. In contrast to
traditional databases, there is no central authority as a consensus mechanism ensures
that the copies of the nodes are identical. The data of the blockchain is maintained in
blocks, which contain a pointer to the previous block. A block maintains transaction data
(payload), a pointer to the previous block, a cryptographically hashed value of a crypto
puzzle, and a timestamp.

2.1.1 Consensus Mechanism

A consensus mechanism determines the participant that is able to append blocks to the
blockchain. Consensus mechanisms are important because they help the blockchain net-
work to maintain the same state across all peers and to prevent the double spending
of coins. The creation of valid blocks is often referred to as mining in Proof-of-Work
(PoW)-based blockchains. However, there are different consensus mechanisms with vari-
ous characteristics [41].

PoW was introduced in the Bitcoin white paper [25]. In such a mechanism, nodes in the
network compete against each other to solve a crypto puzzle. When a node has found a

3

4 CHAPTER 2. BACKGROUND

solution to the crypto puzzle, the other nodes validate the result. A state of consensus
is reached when the majority of the nodes accept the output of the mining. The node
that successfully mined a block receives a reward. The reward of a successful inclusion
are tokens of this blockchain. It consists of transaction fees and possibly a block reward
provided by the protocol. The main disadvantage of this approach is the excessive power
consumption [28].

Proof-of-Stake (PoS) is an alternative that addresses this issue of power consumption.
It pseudo-randomly selects block creators and validators, based on a node’s wealth and
tokens at stake. Even though PoS reduces the power consumption compared to PoW,
scalability is still an issue. In delegated Proof-of-Stake (dPoS) the nodes select a set of
nodes as their delegates (witnesses). Each delegate is given a turn to create a block.
After all the delegates have had a turn, they are shuffled again. Proof-of-Authority (PoA)
relies on special validator nodes to create new blocks. Nodes earn the position of a
validator. Each validator has a reputation attached, as an incentive to retain the position.
However, these consensus mechanisms present a higher a degree of centralization because
the number of delegates is limited. There are other consensus mechanisms [41], and each
one of these implementations offers a trade-off between performance and centralization.
Thus, one must consider those when selecting the most suitable blockchain.

2.1.2 Deployment Type

Blockchains can be classified according to the maintainers and writing and reading access
rights of the distributed ledger. There are private and public blockchains [42]. Public
blockchains are also referred to as permissionless, and private blockchains are also referred
to as permissioned.

• A public blockchain can be accessed and used by anyone following the respective
protocol.

• A private blockchain is controlled by a single organization that manages the
permission.

• A private group-based (consortium) blockchain is controlled by a consortium
with known members.

Public blockchains are completely distributed and decentralized. Access to the network
is unrestricted. All nodes are equal. All nodes can create blocks and perform validation.
Public blockchains are transparent. However, the operation of a public blockchain results
in excessive power consumption. Also, the data is publicly available and can be read
by anyone. Private blockchains restrict the access to the network. Thus, they are not
completely decentralized. Not every node might be able to read the data. Usually, only
selected nodes can create blocks and perform validation. Private blockchains decrease
the power consumption. However, it is not clear whether they can be considered real
blockchains or not, because they often can be replaced by generic databases.

2.2. POLICY-BASED NETWORK MANAGEMENT (PBNM) 5

2.1.3 Performance

There are different factors that affect the performance of a blockchain [10]. For example,
the deployment type and consensus mechanism affect the performance. In general, public
blockchains tend to be slower than private ones. Mainly, because public blockchains
require computationally expensive consensus mechanisms to secure the blockchain state
due to the presence of untrusted stakeholders.

There are different approaches to measure the performance of a blockchain [10]. The
throughput or transaction rate of a blockchain is defined as the maximum number of
transactions that can be confirmed over a specific period of time [13]. It depends on
different factors. For example, the block size determines the maximum number of trans-
actions that can be stored within a single block. Another factor is the latency or block
time of a blockchain. It is defined as the interval in which a new block is appended to
the blockchain. For example, Bitcoin creates a new block every 10 minutes containing
2200 transactions on average and Ethereum [5] creates a new block every 14 seconds with
120 transactions on average [3]. Thus, Bitcoin’s transaction rate can be calculated using
Equation (2.1) resulting in 3.6 transactions per second, and Ethereum’s transaction rate
results in 8.6 transactions per seconds as shown in Equation (2.2).

3.6 tps = 2200 transactions
600 seconds (2.1)

8.6 tps = 120 transactions
14 seconds (2.2)

2.1.4 Transaction Costs

Different blockchains use different formulas to calculate transaction costs or transaction
fees. PoW-based blockchains provide a block reward to miners. Theoretically, transaction
fees are optional. However, miners are free to choose which transactions they want to
include in a block. Therefore, in practice transaction fees are used as an additional
incentive to miners to include particular transactions. Some blockchains, e.g., Stellar and
EOS define a fixed transaction fee. For example, Stellar calculates the transaction fee
based on the computational power used by a transaction. The formula used by Stellar is
shown in Equation (2.3) [17].

transaction fee = number of operations× base fee (2.3)

2.2 Policy-based Network Management (PBNM)

In the past, network management became increasingly complex, due to an increasing
number of devices involved. Moreover, the types of involved devices have become more

6 CHAPTER 2. BACKGROUND

Policy Management
 Tool (PMT)

Policy Decision
Point (PDP)

Policy Enforcement
Point (PEP)

Policy
Repository

Figure 2.1: PBNM architecture

diverse. This lead to the creation of approaches tied to specific situations and configura-
tions, in which the underlying process relies heavily on manual interactions by network
operators. Therefore, new approaches were researched and developed to automate this
process, reducing the manual work of network operators and configuration errors. One
such approach is Policy-based Network Management (PBNM) [40]. The management of
configurations with policies was originally proposed for the management of distributed
systems [36].

2.2.1 PBNM Architecture

A policy is a sequence of Event-Condition-Action (ECA) rules [6]. ECA rules are part of
event-driven computing. In event-driven computing, actions are triggered by events given
a specified condition is satisfied. Originally, ECA rules were used in active databases [26].

There are different approaches to specify policy. The Internet Engineering Task Force
(IETF) policy specification is based on a sequence of rules. A rule is a condition-action
pair. This approach is simple compared to the Ponder policy specification [14] which
is more complex. Ponder distinguishes between different types of policies. There are
access control and obligation policies. Access control policies are further divided into
authorization, delegation, and refrain policies.

The PBNM architecture is shown in Figure 2.1. It is composed of four components:

• The Policy Management Tool (PMT) is used by an operator to define and
update policies. Also, the PMT validates and refines policies. It stores policies in
the policy repository and notifies the PDP about changes.

• The Policy Repository stores the policies in an interoperable, i.e., vendor- and
device-agnostic format.

2.3. INTENT-BASED NETWORKING (IBN) 7

Business View: SLAs, Processes, Guidelines, and Goals

System View: Device- and Technology-Independent

Administrator View: Device-Independent, Technology-Specific

Device View: Device- and Technology-Specific

Instance View: Device-Specific MIBs, PIBs, CLI, etc.

Figure 2.2: Policy continuum

• The Policy Decision Point (PDP) evaluates the policies from the repository. It
installs new devices or rules and communicates policies to the PEP.

• The Policy Enforcement Point (PEP) applies and executes the policies from
the PDP. For example, by routing incoming packets.

2.3 Intent-based Networking (IBN)

Formally, an intent in the context of autonomic networking is defined in Request for
Comments (RFC) 7575 [1] by the IETF as “an abstract, high-level policy used to operate
the network”. In this sense, IBN can be viewed as an evolution of PBNM. It addresses
the business view, i.e., the layer with the highest level of abstraction, from the policy
continuum [15].

The policy continuum is a layered concept which is shown in Figure 2.2. Each layer
corresponds to a view with a particular abstraction level. These layers allow policy authors
to express policies based on their technical knowledge and requirements. The main goal of
IBN is the specification of high-level objectives in a declarative manner without knowing
all the underlying implementation details. It enables individuals without a technical
background and understanding to configure networks. Intents are translated into low-
level policies in a dedicated refinement process.

8 CHAPTER 2. BACKGROUND

Translation Validation

High-level
policy

Low-level
policy Configurations

+

Figure 2.3: Generic refinement process

2.4 Policy Refinement

Policy refinement is the process of translating high-level policies into low-level policies and
configurations [29, 34, 33]. A generic refinement process is depicted in Figure 2.3. High-
level policies correspond to the business or system view of the policy continuum [15]. Low-
level policies address the administrator, device, or instance view of the policy continuum.
High-level policies declaratively describe the desired state of a system, i.e., they do not
specify how this state shall be achieved. Low-level policies target options for particular
technologies or even devices. Therefore, in the refinement process, options from high-
level policies are mapped to low-level options. Usually, refinement includes validation
mechanisms, e.g., to identify invalid or conflicting policies [24, 8, 9].

There are three types of approaches to refinement [29], namely rule-based, classification-
based refinement and Case-Based Reasoning (CBR), and logical based approaches of
refinement. Rule-based approaches are the most automated but also more domain-specific,
i.e., less generic. Logical-based approaches are more generic but also harder to model.
Classification-based refinement and CBR is less complete than the other approaches, e.g.,
it does not support verification or conflict detection.

2.5 Policy-based Blockchain Agnostic Framework

Recently, a Policy-based Blockchain Agnostic Framework (PBBAF) has been proposed [30].
The goal of the PBBAF is to combine policy-based management with a modular blockchain
interoperability API to automate the process of selecting a blockchain to store incoming
transactions. Figure 2.4 shows the architecture of the proposed framework. It is composed
of the following components:

• The Connector is the entry point for users to interact with the framework.

• The Blockchain Costs Monitor periodically retrieves variable blockchain param-
eters, e.g., transaction fees.

• TheAnalytical Solver periodically calculates usage scenarios, e.g., cost thresholds.

• TheDatabase stores various data, e.g., transaction templates for different blockchains.

• The OpenAPI provides adapters to store transactions on different blockchains.

2.5. POLICY-BASED BLOCKCHAIN AGNOSTIC FRAMEWORK 9

Chain A Chain B Chain C Chain N

Chain A Adapter Chain B Adapter Chain C Adapter Chain N Adapter

OpenAPI

Policy Enforcement
Point

Policy Management
Tool

Policy Decision Point

Blockchain
Templates

Regulatory
Data

Policy
Repository Costs Data

Analytical Solvers
Blockchain Costs

Monitor

Connector/API

Bl
oc

kc
ha

in
 A

gn
os

tic
 F

ra
m

ew
or

k
C

ha
in

s

Figure 2.4: Blockchain Agnostic Framework architecture

• The Policy-based Management consists of PDP and PEP which are responsible
for determining an active policy, and selecting a blockchain, respectively.

There are already prototype implementations available for some components of the PB-
BAF. Bifrost [31, 19] is an implementation of the OpenAPI component. It implements
different adapters to connect to nodes of different blockchains. It relies on transaction
templates to create transactions and store data on blockchains. Already stored data can
be retrieved or migrated to a different blockchain. The Bifrost prototype is implemented
in Python.

Also, there is a Policy-based Blockchain Selection Framework (PBS) [22, 32] which im-
plements the Policy-based Management component. It automates the process of selecting
a blockchain based on a set of predefined requirements. It provides a GUI to manage
the blockchain-selection policies. Policies are validated and stored in a repository. For
every incoming transaction, it selects an active policy from all the policies in the reposi-
tory. Then, this active policy determines on which blockchain the incoming transaction
is stored. The PBS Framework consists of a REST API server and a client. It is imple-
mented in JavaScript using the Express framework.

10 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

Intent-based Management is still an infant research area. However, this concept is being
applied and researched in different contexts, such as network management [34, 18, 38, 20]
and cloud management [7, 21]. Moreover, intent-based management is discussed by the
Internet Engineering Task Force (IETF) in several drafts [11, 23, 37]. It should be noted
that these drafts are valid for a limited period of time and may be replaced or become
obsolete. Nevertheless, they are an indication of the growing interest and research in the
intent topic.

3.1 Network Management

Researchers developed an IBN solution, called INSpIRE [34]. INSpIRE includes a refine-
ment technique that translates intents into a set of configurations for managing service
chains in various environments. The solution supports both homogeneous environments
that consist only of Virtual Network Functions (VNFs), and heterogeneous environments
that consist of VNFs and physical middleboxes. INSpIRE determines the VNFs that are
required to fulfill an intent, chains these VNFs based on their dependencies, and presents
low-level details to network devices for posterior traffic steering.

In [18], the authors propose an intent-based approach to manage Virtual Networks (VNs)
based on software-defined Network Virtualization (NV). The goal of the approach is to
automate the management and configuration of VNs based on intents, i.e., high-level
requirement specifications. The implementation is based on an open-source Software-
Defined Networking (SDN) controller. Moreover, the approach is able to provide multiple
VNs over the same physical infrastructure.

An intent-based approach has been proposed to create secure services based on SDN
network orchestration [38]. The approach relies on SDN network orchestration and intents
to automate the configuration and deployment of secure services. In an experimental
evaluation, the authors found that the overhead of the approach is negligible.

An extension of IBN has been proposed [20]. The approach enhances the refinement pro-
cess by employing machine-learning techniques and feedback from the network operators.

11

12 CHAPTER 3. RELATED WORK

They introduce an intermediate representation extracted from intents specified in natural
language. The prototype translates intents from natural language into the intermediate
representation and finally, into low-level network configuration rules.

In [16], the authors describe an intent-based approach to discover and deploy networks.
The intents use a verb-object-subject sentence structure and are specified as tuples. The
refinement of the intents is based on an ontology which is composed of hierarchical cate-
gories of operations. They use Maat agents to mediate between user intents and policies
of network operators. There are still open challenges for the proposed approach such as
scalability of the deployment and security-related aspects.

3.2 Cloud Management

In [7], the authors propose an intent-based approach to cloud service management. The
objective of the approach is to automate or support the decision-making process for cloud
resources of cloud operators. The approach accepts the requirements of cloud users as
intents in a declarative manner. The authors provide a prototype implementation and
evaluate its performance.

In [21], the authors propose an intent-based approach to manage cloud infrastructure.
The approach distinguishes between high-level intents from the underlying infrastructure
implementations. In contrast to existing systems that resolve conflicts during run-time,
the approach detects and resolves conflicts already during the specification. The approach
is called label management service and improves scalability.

3.3 Discussion

In network management, there are intent-based approaches that rely on natural language
for intent specification. However, the refinement of these approaches is more complex
than the refinement described in this thesis. The refinement of INSpIRE [34] relies on
softgoals and operationalizations. The refinement process described in [20] relies on ma-
chine learning techniques. The platform described in [18] includes a refinement process
but also enforces the policies. There are also intent-based approaches in network manage-
ment that do not rely on natural language to specify intents. Specifically, intents in [38]
are specified as a set of key-value pairs in the JSON format. Furthermore, there is an
approach [16] that is based on verb-object-subject tuples.

In cloud management, there are intent-based approaches that rely on natural language to
specify intents. However, the underlying refinement processes are also more complex than
the refinement described as part of this thesis. The refinement process described in [7]
employs linear regression techniques to calculate parameters. Similarly, the refinement
process used in [21] relies on complex label trees. Table 3.1 provides an overview of the
similarities and differences in refinement.

3.3. DISCUSSION 13

Table 3.1: Overview of related work

Intent specification Refinement Area

[34] Natural language Softgoals and Network managementoperationalizations
[20] Natural language Machine learning Network management
[18] Natural language Multi-layer translation Network management
[38] JSON N/A Network management
[16] Tuples Ontology Network management
[7] Natural language Linear regression Cloud management
[21] Natural language Label trees Cloud management

This Work Natural language State machine and Blockchain managementlookup tables

In summary, there are various intent-based approaches in network management and in
cloud management. In most of these approaches, intents are specified in natural language.
However, the refinement processes of these approaches differ and are tied to specific use
cases. Therefore, these approaches cannot be directly applied to a novel context such as
blockchain selection.

14 CHAPTER 3. RELATED WORK

Chapter 4

Intent Refinement Approach

This chapter describes an approach to refine high-level policies, i.e., intents to low-level
policies, in the context of blockchain selection. Section 4.1 describes the design of the
refinement process. Section 4.2 discusses an implementation of the refinement.

4.1 Design

The refinement process is described in Section 4.1.1. Section 4.1.2 provides a formal
definition of an intent grammar for an intent specification language. The available options
are explained in Section 4.1.3. The Intent Refinement Toolkit (IRTK) is a prototype
of the refinement process and is discussed in Section 4.1.4. The parsing process and
the underlying state machine are described in Section 4.1.5. Section 4.1.6 describes the
translation step. Finally, the validation logic is discussed in Section 4.1.7.

4.1.1 Intent Refinement

The refinement process is depicted in Figure 4.1. It takes an abstract high-level policy,
i.e., an intent as input. In a first phase, this intent is parsed and validated. In case the
given intent is complete and valid, the output is a parsed intent. The parsed intent is
an instance of an intermediate data structure storing all the parsed options. In a second
phase, the parsed intent is translated into a set of low-level policies. Again, the translation

Parsing Translation

Intent Low-level
policies

ValidationValidation

Figure 4.1: Refinement process

15

16 CHAPTER 4. INTENT REFINEMENT APPROACH

also validates the parsed intent. Finally, if there is no validation error, the translation
returns a set of low-level policies.

4.1.2 Intent Grammar

Listing 4.1 specifies the grammar of the intent language using the Extended Backus Naur
Form (EBNF) [35]. EBNF is an extension of the Backus Naur Form (BNF), which ad-
ditionally supports the specification of options and repetitions. BNF and EBNF are
notation techniques that allow the formal specification of context-free grammars. They
are often used to specify the syntax of programming languages. The notation is explained
in Table 4.1. Moreover, commas indicating sequences are omitted, for clarity. Further,
trailing semicolons or dots indicating the end of the right-hand-side expression are not
used. Similarly, whitespace is omitted from the specification. Instead, every symbol in a
sequence is implicitly separated by whitespace.

1 <intent> ::= "for" <users> ["in" "the" <timeframe>] "select" ("the"
2 <profile> [<filters>] "blockchain" [("from" | "except")
3 <blockchains>] | <blockchain>) ["with" <modifiers>] ("until"
4 "the" <interval> "costs" "reach" [<currency>] <threshold> | "as"
5 "default")
6 <users> ::= <user> { ("," | "and") <user> }
7 <user> ::= character { character }
8 <timeframe> ::= "day" | "night" | "morning" | "afternoon"
9 <profile> ::= "cheapest" | "fastest"

10 <filters> ::= <filter> { ("," | "and") <filter> }
11 <filter> ::= "private" | "public" | "fast" | "cheap" | "stable"
12 | "popular"
13 <blockchains> ::= <blockchain> { ("," | "and") <blockchain> }
14 <blockchain> ::= "Bitcoin" | "EOS" | "Ethereum" | "Hyperledger"
15 | "IOTA" | "Multichain" | "Stellar"
16 <modifiers> ::= <modifier> { ("," | "and") <modifier> }
17 <modifier> ::= "encryption" | "redundancy" | "splitting"
18 <interval> ::= "daily" | "weekly" | "monthly" | "yearly"
19 <currency> ::= "CHF" | "EUR" | "USD"
20 <threshold> ::= integer | real

Listing 4.1: Intent grammar

4.1.3 Intent Parameters

An intent can be composed by different parameters, Table 4.2 shows the classification of
the available options based on their usage. Conditions are used by the PDP to select an
active policy from a set of policies. Selection strategies are used by the PDP to select a
blockchain from the active policy to store incoming transactions. Filters are used by the

4.1. DESIGN 17

Table 4.1: EBNF notation

Notation Description
[...] Optional expression
{...} Repeated expression
(...) Grouped expression
<...> Non-terminal symbol
“...” Terminal symbol
... Literal class, e.g., integer or character
...|... Choice between expressions

Table 4.2: Classification of configuration parameters

Usage Parameters
Condition Users, Timeframe, Cost Interval, Cost Currency, Cost Threshold
Selection Profile, Blockchain

Filter Deployment Type, Transaction Rate, Transaction Costs, Maturity,
Whitelist, Blacklist

Modifier Redundancy, Encryption, Splitting

PDP to restrict the pool of blockchains. Filters can be further divided into static and
dynamic options. Static filter options, such as the deployment type of a blockchain, remain
constant over time. Dynamic filter options, such as transaction cost, change over time.
Modifiers are used to alter the filtering or selection process. Most of the configuration
options are directly mapped onto options available in the low-level policies. Some options,
e.g., the timeframe provide an abstraction of the options from the low-level policies. There
are options, e.g., encryption which are not available in the low-level policies. Finally,
there are options, e.g., turing complete which are only available in the low-level policies.

Although intents are specified in natural language, the negation of options is not sup-
ported. Negations could be implemented only for a subset of the available options, e.g.,
private. The negation of private, i.e., not private is equivalent to public. Similarly,
all the options that could be negated can already be specified without negation. Therefore,
it was decided to not support negation of options to avoid unnecessary complexity.

Each of these options can have different parameters. Conditions can be composed of
users, timeframes, cost interval, cost currency and a cost threshold. The specification of
at least one user is required. Timeframe and cost currency are optional. Cost-related
parameters, i.e., cost interval, cost currency, and cost threshold can only be specified for
non-default policies. Moreover, for non-default policies the specification of a cost interval
and a cost threshold is required.

Users A set of users, which can be composed of on one or more user. Policies in the PDP
are organized on a per-user basis. Every user defines his/her own policies which are
independent from policies defined by other users.

18 CHAPTER 4. INTENT REFINEMENT APPROACH

Timeframe The timeframe in which a policy can be activated by the PDP. The allowed
values are day, night, morning and afternoon. If specified, the policy can be
activated only within the specified timeframe. If omitted, the policy can be activated
anytime. The starting and ending times for the timeframes can be customized by
the user in a separate configuration file.

Cost Interval The interval defines at which rate the accumulated transaction costs are
reset. The allowed values are daily, weekly, monthly and yearly. An interval
is required, except for the default policy. The default policy does not specify an
interval, because it does not have a cost threshold.

Cost Currency The currency of the specified cost threshold. The allowed values are CHF,
EUR and USD. The default value is USD. In case a non-default currency is specified,
the cost threshold is converted from the specified currency into US Dollars. This is
necessary, because of the design of the PDP. The default policy specifies the currency
which is used by all other policies and can not be changed. Therefore, US Dollars
(USD) is always specified as currency in the default policy and the threshold values
are converted if necessary.

Cost Threshold The threshold for the specified interval. The allowed value is either an
integer or a float. A threshold is required, except for the default policy. The default
policy does not specify a threshold. The PDP keeps track of the accumulated
transaction costs within the specified interval. For each incoming transaction, it
compares the accumulated transaction costs with the specified threshold. When the
accumulated transaction costs exceed the threshold, the policy is deactivated.

Selections can be composed of profile or blockchain. Generally, the specification of a
profile is required and the specification of a blockchain is optional. Moreover, they are
mutually exclusive, i.e., it is not possible to specify a profile and a blockchain for the
same policy. However, a blockchain can be specified instead of a profile.

Profile The profile determines how the PDP selects a blockchain from the blockchain
pool. The fastest profile selects the fastest blockchain, i.e., the blockchain with
the highest transaction rate. In case of a tie, the cheapest blockchain is chosen
to resolve the tie. The cheapest profile selects the cheapest blockchain, i.e., the
blockchain with the lowest transaction cost. In case of a tie, the fastest blockchain
is chosen to resolve the tie. Depending on the profile different filter options might
be available. For example, cheap can only be specified with the fastest profile. It
is ignored with the cheapest profile. Analogously, fast can only be specified with
the cheapest profile and is ignored with the fastest profile.

Blockchain A particular blockchain to store incoming transactions. Currently the al-
lowed values are Bitcoin, EOS, Ethereum, Hyperledger, IOTA, Multichain, and
Stellar. However, the values depend on the blockchains that are supported by the
PEP. Either a profile or a blockchain has to be specified. Instead of specifying a
profile, a particular blockchain can be specified explicitly. If specified, transactions
are always stored on the specified blockchain. Although, the blockchain option is
listed as a selection, it is implemented as a filter option. The PDP always expects a

4.1. DESIGN 19

selection profile. It does not support the specification of a single blockchain directly.
As a workaround, the blockchain pool can be restricted to only contain a particular
blockchain. Therefore, the specified selection profile does not matter and the PDP
will always select the only blockchain in the pool.

Filters can be composed of deployment type, transaction rate, transaction cost, maturity,
and whitelist or blacklist. All the available options are optional. Moreover, private and
public, and whitelist and blacklist are mutually exclusive.

Deployment Type A filter option specifying the deployment type of blockchains. The
allowed values are private and public. They are mutually exclusive. It determines
whether a private, public, or any type of blockchain can be used. If omitted, all
types of blockchains are considered.

Transaction Rate A filter option, restricting the blockchain pool. The allowed value is
fast. If specified, only blockchains with a transaction rate equal or higher than a
threshold defined in an external configuration are considered. This option is only
available in combination with the cheapest profile. If this option is specified in
combination with the fastest profile, it is ignored.

Transaction Costs A filter option restricting the blockchain pool. The allowed value
is cheap. If specified, only blockchains with a transaction cost equal or less than a
threshold defined in an external configuration are considered. This option is only
available in combination with the fastest profile. If this option is specified in
combination with the cheapest profile, it is ignored.

Maturity Filter options restricting the blockchain pool. The allowed values are stable
and popular. The values are not mutually exclusive, i.e., they can be combined.
They determine, whether a stable and/or popular blockchain can be used. If omit-
ted, all blockchains are considered.

Whitelist and Blacklist Filter options restricting the blockchain pool. The allowed
values are the same as the Blockchain parameter. A whitelist or blacklist can be
specified only with a profile. In case a blockchain is specified instead of a profile,
whitelist and blacklist are not available, because the blockchain pool contains only
the specified blockchain anyway. If specified, the PDP only considers blockchains
from the whitelist or a blockchain not on the blacklist, respectively. If omitted, all
available blockchains are considered.

Modifiers can be composed of redundancy, encryption, and splitting. All the available
options are optional.

Redundancy A modifier option. The allowed value is redundancy. If specified, the
transaction data is stored on a blockchain and in a conventional database.

Encryption A modifier option. The allowed value is encryption. If specified, the
transaction data is encrypted before storing it. However, encrypting the transaction
data increases the size of the transaction data.

20 CHAPTER 4. INTENT REFINEMENT APPROACH

Refiner Translator

Exchange RatesExchange Rates

Repository

Policy Data

Transaction Data

Transaction
Processor

Bifrost / OpenAPI
(PEP)

PBS Framework
(PDP)

API

create
intent

create
transaction

Monitors External Services

... ...

Intent Refinement Toolkit

Parser

Tokenizer

Validator

Blockchain Data

Encryptor

Internal
Component

External
Component

API

Transaction Preprocessor

Figure 4.2: IRTK architecture

Splitting A modifier option. The allowed value is splitting. If specified and the
blockchain pool consists of more than one blockchain after filtering, the PDP selects
a different blockchain for every incoming transaction.

4.1.4 Intent Refinement Toolkit (IRTK)

Figure 4.2 depicts the architectural design of the Intent Refinement Toolkit (IRTK) and
related components. Internal components are illustrated in grey and external components
in white. It exposes an API that can be used by users or other systems to create intents.

The entrypoint of the IRTK is the refiner component. It acts as a wrapper for the parser
and translator components. The parser component relies on the tokenizer component to
tokenize an intent and on the validator component to validate the intent while parsing
it. The translator component relies on the validator component that validates an intent
while translating it to low-level policies. Also, the translator relies on the repository that
provides exchange rates for currencies. Monitor services periodically call external services
to update these exchange rates and store them in the repository.

A transaction preprocessor intercepts all calls to submit new transactions. It interacts
with the repository and the PBS Framework to check whether the active policy has
redundancy or encryption enabled. In case encryption is enabled, the transaction pro-
cessor component calls an encryption component that encrypts the transaction data before
submitting it to the PEP. In case redundancy is enabled, the transaction processor simply
submits the transaction twice, once for the blockchain determined by the PDP and once

4.1. DESIGN 21

for a conventional database. This transaction preprocessor component is needed, because
the PBS Framework does not support encryption and redundancy natively.

4.1.5 Intent Parsing

The parser component of the IRTK is implemented as a state machine. More precisely, it
is a Deterministic Finite Automaton (DFA). It is responsible for parsing and validating
intents. Figure 4.3 depicts the notation used in the state chart, and Figure 4.4 illustrates
a high-level overview of the state chart. It consists of composite states which are illus-
trated in dedicated state charts. It is split into smaller parts, both for practical reasons
and understandability. There are optional states, e.g., the timeframe state, that can be
skipped. Also, there are states which can be visited repeatedly, e.g., the users and the
modifiers states. Moreover, there are two accepting states, i.e., the policy and the default
policy states. These correspond to valid intent specifications that can be translated to
low-level policies. Finally, there is an error state. It is not illustrated in the state chart.
However, each state can lead to the error state, if it encounters an invalid event. The
error state does not define any outgoing transitions. Thus, the error state acts as a sink
state that ignores all further tokens. The states of the parser state machine are named
according to the tokens they expect.

Initial
State

Accepting
State

Atomic
State

Composite
State

transition

Figure 4.3: State chart legend

Users Timeframe Profile/Blockchain White-/Blacklist Modifiers

Default

Policy

DefaultPolicy

Costs

Figure 4.4: State chart overview

The composite users state of the overview is shown in detail in Figure 4.5. The initial
starting state is the ForState. Therefore, it accepts the token “for”. The UserState is a
capturing state, i.e., it parses intent options, specifically usernames. Since intents can be
defined for more than one user the UserState can be visited repeatedly.

22 CHAPTER 4. INTENT REFINEMENT APPROACH

For User

for

InSelect

<user>

and | ,

Figure 4.5: User states

Figure 4.6 shows the composite timeframe state of the overview. Since it is an optional
state, it can be skipped entirely via the select transition connecting the InSelectState
with the TheBlockchainState. In this part of the state machine, the only capturing state
is the TimeframeState. It is responsible for parsing and validating the timeframe option.

InSelect

in

The

the

Timeframe

<timeframe>

Select

select

TheBlockchain

select

Figure 4.6: Timeframe states

The components of the profile and blockchain states of the overview are depicted in
Figure 4.7. As the name suggests, there are two alternative pathways. Usually, an intent
specifies a profile that acts as a selection strategy. Alternatively, a single blockchain can
be specified directly which will always be selected. Thus, there are two capturing states,
the ProfileState and the TheBlockchainState. Depending on the specified options,
the parser state machine ends up in different states. In the profile pathway, there is yet
another nested composite state, the filters state.

TheBlockchain

the

<blockchain> WithUntilAs

<profile>
select

Profile Filters
FromExceptWith

UntilAs

Figure 4.7: Profile and blockchain states

Figure 4.8 illustrates the composite filter states from the profile and blockchain states.
There are two capturing states, the FilterState and the FilterBlockchainState. Both
states parse the filter options of the intent. In a single intent, multiple filter options can
be specified and therefore, the FilterState can be reached repeatedly.

4.1. DESIGN 23

FilterBlockchain
FromExceptWith

UntilAs

<filter>

Filter Blockchain

blockchain

blockchain

<filter>

and | ,

Figure 4.8: Filter states

Figure 4.9 shows the whitelist, blacklist, and modifier states from the overview. There
are many alternative pathways. For example, optionally a whitelist or blacklist can be
specified. Also, optionally modifiers can be specified. For simplicity, these states are again
nested composite states. Depending on the specified options, the parser state machine
ends up in different states.

until

FromExceptWith
UntilAs

Whitelistfrom

with

Modifiers

except Blacklist

The2

until

until

Default

with

as

with

as

as

as

until

Figure 4.9: Whitelist, blacklist, and modifier states

Figure 4.10 depicts the whitelist and blacklist states from the whitelist, blacklist, and mod-
ifier states. Since the whitelist and blacklist accept multiple blockchains, the correspond-
ing states can be reached repeatedly. Also, the WhitelistState and BlacklistState
are capturing states. They parse blockchain names that are either explicitly included, or
excluded from the selection process.

<blockchain>

Whitelist
WhitelistWith

UntilAs

and | ,

(a)

<blockchain>

Blacklist
BlacklistWith

UntilAs

and | ,

(b)

Figure 4.10: Whitelist (a) and blacklist (b) states

24 CHAPTER 4. INTENT REFINEMENT APPROACH

The modifiers state from the whitelist, blacklist, and modifier states are shown in Fig-
ure 4.11. Again, the specification of modifiers is optional, and therefore the corresponding
states can be skipped entirely. The ModifierState is a capturing state. It parses mod-
ifier options used to alter the behavior of the selection process. Since an intent accepts
multiple modifier options, the state can be reached repeatedly.

WithUntilAs
with

The2

until

as Default

until

as

<modifier>

Modifier UntilAs

and | ,

Figure 4.11: Modifier states

Figure 4.12 and Figure 4.13 illustrate the two alternative pathways leading to the accept-
ing states. One pathway corresponds to a non-default policy, and the other corresponds to
a default policy. For the non-default policy, cost-related parameters are required. The cor-
responding capturing states are the IntervalState, the optional CurrencyThresholdState,
and the ThresholdState. Only the currency is optional, which, by default is set to US
Dollars (USD).

The2 Interval Costs

the

<interval>

Reach

costs

CurrencyThreshold

reach

<currency>

Threshold Policy

<threshold>

<threshold>

Figure 4.12: Cost states

Default

default

DefaultPolicy

Figure 4.13: Default states

4.1.6 Intent Translation

After an intent has been parsed and validated, it can be translated into low-level poli-
cies. The translator component accepts an intent and processes the parsed options into
corresponding options of low-level policies. Intents support multiple users, while low-level
policies always correspond to a single user. Therefore, a single intent can be translated
into a set of low-level policies, i.e., one low-level policy for each user specified in the intent.

Furthermore, the translator component validates the intent options. For example, it
excludes all the blacklisted blockchains from the pool. Depending on the specified options,

4.2. IMPLEMENTATION 25

Table 4.3: Validation types

Type Options Intent
Exclusion fastest and fast, cheapest and cheap valid
Conflict private and public invalid

it is possible that the resulting pool is empty, i.e., contains no blockchains. In this case
the translation is ended with a validation error, to avoid low-level policies with an empty
blockchain pool.

4.1.7 Intent Validation

The parser and translator components of the IRTK validate the intent based on the
specified options. However, not every state of the parser performs validation. Some
states perform basic validation, e.g., check whether an option is within a given range or
a member of an enum definition. Other states perform more advanced validation. These
complex validations distinguish between exclusions and conflicts. Exclusions correspond
to options that have no effect in the current configuration. For example, the fast option
is redundant if the fastest selection strategy has been specified. If an exclusion is
encountered, the underlying option is simply ignored. The corresponding policy is still
valid and the parsing process continues.

Conflicts are combinations of options that are mutually exclusive. For example, the
public and private filter options conflict with each other. There are no blockchains that
are public and private at the same time. Thus, it would result in an empty blockchain
pool of the corresponding policy. Whenever a conflict is detected, the parser transitions to
the error state and the underlying policy is invalid. The excluding and conflicting options
are summarized in Table 4.3.

4.2 Implementation

The prototype of the IRTK is implemented in Python. Python is an object-oriented, in-
terpreted, dynamically and strongly typed language, with a rich ecosystem of third-party
packages available. Python is well-suited to implement the system, because other compo-
nents of the Policy-based Blockchain Agnostic Framework, e.g., Bifrost/OpenAPI (PEP)
are implemented in Python already. Therefore, these components can be used in a wrap-
ping framework as libraries directly without the need for implementing complex bindings
or exposing a RESTful API. Also, Python allows for faster development compared to
other languages, e.g., Java or C++ [27].

The prototype implementation comprises a small number of dependencies. The parser
component relies on the Natural Language Toolkit (NLTK) for tokenizing intents. The
repository is implemented using sqlalchemy as an Object-Relational Mapper (ORM). An

26 CHAPTER 4. INTENT REFINEMENT APPROACH

ORM abstracts the database interactions and is agnostic of the SQL-dialect. Therefore,
the repository can easily be extracted and even the underlying database can be switched
without affecting the rest of the prototype. Currently, the database is based on Post-
greSQL, but it could be replaced with, e.g., MariaDB (MySQL) by simply replacing the
database driver. This is possible, because the prototype does not rely on Postgres-specific
features. Psycopg2 is a database driver for Postgres. This driver would have to be re-
placed when switching to a different database such as MariaDB. Finally, to create new
policies in the PBS Framework from the refined policies, the requests package is required
to interact with the RESTful API from the PBS Framework.

Further, the prototype uses the unittesting package for unit testing provided by the
Python standard library. The test cases are data-driven and require the ddt package.
There are almost 200 unit test cases implemented, that verify the functional requirements
of the parser, translator and validator.

The remainder of this section is structured as follows. Section 4.2.1 discusses the imple-
mentation of the refinement. The implementation of the parsing and the translation are
described in more detail in Section 4.2.2 and Section 4.2.3, respectively. Section 4.2.4
describes the implementation of the validation. Finally, the intent and policy data types
are described in Section 4.2.5 and Section 4.2.6, respectively.

4.2.1 Intent Refinement

The IRTK exposes a collection of tools to refine blockchain-selection intents to low-level
policies. The tools provide different levels of control over the refinement process depending
on a user’s needs.

1 from irtk import refine
2
3 policies = refine(
4 "for client"
5 " select the cheapest blockchain"
6 " until the daily costs reach 30"
7)

Listing 4.2: Intent refinement using the refine method

The most straightforward way to refine an intent, is the refine method provided by
the IRTK. It implements a function that abstracts the underlying refinement procedure,
providing a transparent interaction to the user. Internally, it creates a parser instance
which is used to parse the intent. If this intent is valid, it uses a translator to translate
the intent into low-level policies. An example to refine an intent using the refine method
is shown in Listing 4.2.

4.2. IMPLEMENTATION 27

1 from irtk import Parser, Translator
2
3 parser = Parser()
4 intent = parser.parse(
5 "for client"
6 " select the cheapest blockchain"
7 " until the daily costs reach 30"
8)
9

10 translator = Translator()
11 policies = translator.translate(intent)

Listing 4.3: Intent refinement using a parser and translator

Alternatively, this process can be achieved with the Parser and Translator classes. First,
a parser instance has to be created. This parser instance can be used to parse an intent.
In case, the intent is complete and valid, it will be returned. Then, a translator instance
has to be created. This translator instance can be used to translate the parsed intent into
low-level policies. An example to refine an intent using a Parser and a Translator is
shown in Listing 4.3.

These two approaches are equivalent in that both produce the same result given the same
input. However, the former is simpler and hides all the details but the latter provides
more flexibility. For example, it is possible to interact with the parsed intent, i.e., intent
before the translation.

4.2.2 Intent Parsing

The parser is implemented as a state machine. It defines two interfaces for states. The
basic State interface and the more advanced ValidationState interface. The former
does not perform any validation and is shown in Listing 4.4. The latter does perform
validation and is shown in Listing 4.5. Both types optionally can be passed a dictionary
object of token and successor state pairs defining the transitions for this state upon
initialization. Moreover, both interfaces expose a run method that takes two parameters.
It expects a token which is a string and an intent which is the intent instance that
stores the already parsed options. The default implementation of state, simply checks
whether a transition is defined for the token. If there is no transition defined for a
token, an IllegalTransitionError is raised. Otherwise, the successor state is returned.
The default implementation of validation state, additionally calls a validation method
after ensuring a transition is defined for the token before returning the successor state.
Therefore, concrete implementations that extend the ValidationStatemust override and
implement their own _validate method.

28 CHAPTER 4. INTENT REFINEMENT APPROACH

1 import abc
2
3 class State(abc.ABC):
4 def __init__(self, transitions=None, accepting=False):
5 self._transitions = transitions or {}
6 self._accepting = accepting
7
8 def run(self, token, intent):
9 if token not in self._transitions:

10 raise IllegalTransitionError
11 return self._transitions[token]

Listing 4.4: State interface and default implementation

1 import abc
2
3 class ValidationState(State):
4 def run(self, token, intent):
5 if token not in self._transitions:
6 raise IllegalTransitionError
7 self._validate(token, intent)
8 return self._transitions[token]
9

10 @abc.abstractmehthod
11 def _validate(self, token, intent):
12 raise NotImplementedError

Listing 4.5: Validation state interface and default implementation

Listing 4.6 shows an example that parses an intent. The result is an instance of the
intent data type that stores all the specified options. In this example, the intent is parsed
completely.

1 from irtk import Parser
2
3 parser = Parser()
4 intent = parser.parse(
5 "for client"
6 " select the cheapest blockchain"
7 " until the daily costs reach 30"
8)

Listing 4.6: Intent parsing

A parser is implemented as a state machine and stores the current state as an instance
attribute. Therefore, it is possible to parse an intent incrementally. The parser is able to

4.2. IMPLEMENTATION 29

parse every token separately. It is not possible though to pass every character separately.
Although, it would be possible to implement a parser that accepts every character the
number of states would increase drastically. Therefore, the parser is accepts tokens and
not individual characters which also is more sensible with regard to maintainability.

1 from irtk import Parser
2
3 parser = Parser()
4 parser.parse("for client")
5 parser.parse("select the cheapest blockchain")
6 intent = parser.parse("until the daily costs reach 30")

Listing 4.7: Incremental intent parsing

As an illustration, Listing 4.7 shows the very same intent from the previous example and
parses it incrementally. The outcome does not differ from the result when parsing the
intent completely, in a single turn. However, this provides users of the library to cover a
wider range of use cases, e.g., parsing intents in real-time.

1 from irtk import Parser
2
3 parser = Parser()
4 intent = parser.parse(
5 "for client"
6 " select the cheapest blockchain"
7 " until the daily costs reach 30"
8)
9

10 # Error: the same parser instance cannot
11 # be used to parse different intents
12 other_intent = parser.parse(
13 "for other_client"
14 " select the fastest blockchain"
15 " until the weekly costs reach 300"
16)

Listing 4.8: Parsing multiple intents using a parser

The previous examples focused on parsing a single intent. One can consider a use case
where multiple intents must be parsed. Listing 4.8 shows an attempt to parse two indi-
vidual intents using the same parser instance. However, this approach will only work as
intended for the first intent and not for the second one. In fact, the second intent, i.e.,
other_intent raises an IllegalTransitionError. After parsing the first intent, the
state machine of the parser is in an accepting state. The accepting state does not define
any outgoing transitions and therefore does not accept any tokens. If a token is passed to
the accepting state anyway, the state machine of the parser transitions to a special error
state and raises an IllegalTransitionError.

30 CHAPTER 4. INTENT REFINEMENT APPROACH

1 from irtk import Parser
2
3 parser = Parser()
4 intent = parser.parse(
5 "for client"
6 " select the cheapest blockchain"
7 " until the daily costs reach 30"
8)
9

10 # Solution: create new parser instance
11 # before parsing another intent
12 other_parser = Parser()
13 other_intent = other_parser.parse(
14 "for other_client"
15 " select the fastest blockchain"
16 " until the weekly costs reach 300"
17)

Listing 4.9: Parsing multiple intents using multiple parser

Listing 4.9 shows a fixed version of the same example. Rather than using the same parser
instance that was used to parse the first intent, a new parser instance is used to create
the second intent. This example works as intended for both intents.

4.2.3 Intent Translation

The translator acts as an adapter to adapt the intent data type to the policy data type
defined by the PBS Framework. It uses conditional checks and lookup tables to translate
intent options to corresponding low-level policy ones.

The intent data type supports multiple users, the policy data type only a single one.
Therefore, an intent is translated to one policy for each user. The intent data type has
a timeframe field, the policy data type expects a start and end point specified in hours
and minutes. Therefore, the timeframe is translated to a start and end point based on
values defined in a configuration file. This configuration file allows users to customize the
translation for their particular use case. Further, both data types support cost related
parameters such as interval, currency, and threshold. The intent data type supports a
blockchain instead of a profile. The policy data type does not support this, it always
requires a profile. Therefore, the translation restricts the blockchain pool to only contain
the specified blockchain so that it will always be selected, regardless of the profile.

The intent and policy data type support a number of filter options. However, not all
options are supported by both data types. Specifically, the intent data type supports
cheap, popular, and stable as filter options which are not supported by the policy data
type. The policy data type supports maximum block time, minimum data size, and
turing complete as filter options which are not supported by the intent data type. Both

4.2. IMPLEMENTATION 31

data types support a whitelist parameter. The intent data type additionally supports a
blacklist parameter. During translation the blockchains in the blacklist are simply mapped
to the whitelist of the policy data type by adding the remaining blockchains. Both data
types support splitting of transactions as a modifier. The intent data type additionally
supports redundancy and encryption as modifiers.

1 from irtk import Translator
2
3 intent = ...
4 other_intent = ...
5
6 translator = Translator()
7 policies = translator.translate(intent)
8 other_policies = translator.translate(other_intent)

Listing 4.10: Intent translation using a translator

Listing 4.10 shows an example that translates multiple, already parsed intents. It does
not show how these intents have been parsed though. Section 4.2.2 provides examples for
for parsing intents. In contrast to the parser, the implementation of the translator allows
to translate multiple intents. There is no need to create a new translator instance for
every intent to be translated.

4.2.4 Intent Validation

Intent validation is implemented as part of the parser and the translator. Whenever the
state machine of the parser encounters a token that it does not expect, i.e., a token for
which no transition is defined in the current state, an IllegalTransitionError is raised.

1 class ErrorState(State):
2 def run(self, token, intent):
3 return self

Listing 4.11: Error state implementation

The parser catches this error and transitions to a special error state before reraising the
IllegalTransitionError. The implementation of the error state is shown in Listing 4.11.
It does not define any outgoing transitions and therefore, once this error state is reached,
there is no recovery and the underlying intent stays invalid. Some states also perform
validation of the encountered token. For example, some states check whether the token is
a member of an enum. Other states, such as the ThresholdState check whether the token
is in fact a number that can be converted to a floating point value. Finally, there are also
states that perform more complex validation. In these cases, exclusions and conflicts can
be distinguished. An exclusion is encountered, whenever the current token corresponds
to an option that has no effect in combination with an already specified option. An

32 CHAPTER 4. INTENT REFINEMENT APPROACH

example would be the fast filter option with the fastest profile. In case, an exclusion is
encountered, it is simply ignored. On the other hand, a conflict occurs when the current
token corresponds to an option that is mutually exclusive with an already specified option.
For example, the private and public filter options are mutually exclusive, because a
blockchain can be either private or public but not both at the same time. Therefore, if
these options are specified together, the blockchain pool would always be empty. In case,
a conflict is encountered, a ValidationError is raised. The parser will catch this error
and transition to a special error state.

The translator also validates the intent. During translation of intent options to low-level
policy ones, it can occur that the resulting blockchain pool will be empty. For example,
if an intent blacklists all the available blockchains the pool will be empty. To avoid this,
the translator checks whether the pool will be empty. In case, it detects a violation it will
raise a ValidationError.

4.2.5 Intent

The IRTK implements an intent data type which is shown in Listing 4.12. It is the inter-
mediate result of the refinement process. The parser parses an intent and creates a new
instance of the intent data type. It is used to store all the parsed options. These abstract,
high-level options must be translated to low-level ones. For example, the intent data type
has a timeframe attribute. The allowed values are DAY, NIGHT, MORNING, and AFTERNOON.
However, the low-level policy defined by the PBS Framework expects a timeframe_start
and timeframe_end in the format of “HH:MM”. Therefore, the translator has to translate
the timeframe value to a corresponding timeframe_start and timeframe_end. More-
over, some of the options from the intent data type are not supported by the low-level
policies of the PBS Framework.

1 from dataclasses import dataclass, field
2
3 @dataclass
4 class Intent:
5 users = field(default_factory=set)
6 timeframe = None
7 blockchain = None
8 profile = None
9 filters = field(default_factory=set)

10 whitelist = field(default_factory=set)
11 blacklist = field(default_factory=set)
12 modifiers = field(default_factory=set)
13 interval = None
14 currency = None
15 threshold = 0.0

Listing 4.12: Intent data type

4.2. IMPLEMENTATION 33

4.2.6 Policy

The policy data type shown in Listing 4.13 corresponds to the policy model that is used
by the PBS Framework. It is the final result of the refinement process. The translator
translates a parsed intent and returns a set of instances of the policy data type. The IRTK
implements a number of enum types such as Time, CostProfile, or BlockchainType.
Their implementation is not shown here, but it can be looked up in the source code. Also,
the policy data type defines an asdict method that returns a dictionary object of its
options. Analogously, the asjson method returns a JSON representation of the to policy
instance. These formats use the exact same names and export only the options that are
compatible with the PBS Framework. Therefore, these methods can be used to interact
with the PBS Framework, e.g., to create a new policy.

1 from dataclasses import dataclass, field
2
3 @dataclass
4 class Policy:
5 user = ""
6 timeframe_start = Time.DEFAULT
7 timeframe_end = Time.DEFAULT
8 cost_profile = CostProfile.ECONOMIC
9 min_tx_rate = 4

10 max_block_time = 600
11 min_data_size = 20
12 turing_complete = False
13 blockchain_pool = field(default_factory=set)
14 blockchain_type = BlockchainType.INDIFFERENT
15 split_txs = False
16 interval = None
17 currency = None
18 threshold = 0.0

Listing 4.13: Policy data type

In contrast to the intent data type, the policy data type supports turing_complete as an
option. This option acts as a filter on the blockchain pool, if it is specified only blockchains
that are turing complete are considered. The policies refined by the IRTK will always
have this flag disabled, and therefore allow both turing-complete and non-turing-complete
blockchains. If a user wants to only consider turing-complete blockchains in their selection
via the IRTK, they must manually enable this flag after the translation. Similarly, the
policy data type supports maximum block time and minimum data size which are not
supported by the intent data type.

34 CHAPTER 4. INTENT REFINEMENT APPROACH

Chapter 5

Evaluation

This chapter presents the results of the evaluation of the performance of the IRTK as well
as the results of the survey on blockchain usage requirements. The procedure and the
results of the performance testing of the IRTK prototype are described in Section 5.1. Sec-
tion 5.2 formulates a set of evaluation questions and hypotheses regarding the blockchain
usage requirements which are compared against the results of the survey.

5.1 Performance Testing

Performance testing is used to assess non-functional requirements, such as the running
time of a software system. Software microbenchmarks are a type of performance tests
which focus on performance of small isolated components, e.g., functions. Section 5.1.1
describes the hardware and settings used to execute the performance benchmarks. The
performance tests and procedure are described together with the results in Section 5.1.2.
Finally, Section 5.1.3 discusses the results.

5.1.1 Test System

All the benchmarks were conducted on the same bare-metal machine. The system uses an
i5-3570K CPU @ 3.40GHz and has 16GB of RAM. The operating system is Arch Linux
using the Linux desktop 5.4.1-arch1-1 kernel. Python is a garbage-collected programming
language. The benchmarks were performed with garbage-collection enabled deliberately.
This assures that the measured performance values are accurate and resemble a real-life
example. Disabling the garbage collection and switching to manual garbage collection has
improved the stability of the results. However, the key findings remained the same for
automatic and manual garbage collection.

35

36 CHAPTER 5. EVALUATION

Table 5.1: Overview of intent categories

Intent category Parameters Currency Examples
Simple required default Listing 5.1, Listing 5.2
Intermediate required non-default Listing 5.3, Listing 5.4
Complex required and optional non-default Listing 5.5, Listing 5.6

Table 5.2: Overview of intent variations

Intent variation Number of users Examples
Single 1 Listing 5.1, Listing 5.3, Listing 5.5
Multi > 1 Listing 5.2, Listing 5.4, Listing 5.6

5.1.2 Results

There are a number of benchmarks to assess the performance of the IRTK prototype.
Specifically, the performance of the refinement, the parsing and the translation is tested.
The performance of the parsing is compared to an alternative approach based on regular
expressions. Moreover, there are different categories of intents that are used as input
data for the benchmarks which are summarized in Table 5.1. There are simple, inter-
mediate and complex intents. Simple intents only specify the required parameters and
use the default currency. In contrast, intermediate intents use a non-default currency.
Complex intents specify any number of parameters including optional ones and also use a
non-default currency. Furthermore, the categories exist in two variations which are sum-
marized in Table 5.2. The single-user variation specifies a single-user and the multi-user
variation specifies multiple users. Specifically, in the example benchmarks three users are
used for the multi-user variations. Finally, each group and variation pair consists of a set
of intents that satisfy the group and variation criteria.

1 for client
2 select the cheapest blockchain
3 until the daily costs reach 10

Listing 5.1: Simple intent with a single user

1 for client_a, client_b and client_c
2 select the cheapest blockchain
3 until the daily costs reach 10

Listing 5.2: Simple intent with multiple users

5.1. PERFORMANCE TESTING 37

1 for client
2 select the cheapest blockchain
3 until the daily costs reach CHF 10

Listing 5.3: Intermediate intent with a single user

1 for client_a, client_b and client_c
2 select the cheapest blockchain
3 until the daily costs reach CHF 10

Listing 5.4: Intermediate intent with multiple users

1 for client
2 select the cheapest public, stable and popular blockchain
3 except Bitcoin and Ethereum
4 with splitting, redundancy and encryption
5 until the daily costs reach CHF 10

Listing 5.5: Complex intent with a single user

1 for client_a, client_b and client_c
2 select the cheapest public, stable and popular blockchain
3 except Bitcoin and Ethereum
4 with splitting, redundancy and encryption
5 until the daily costs reach CHF 10

Listing 5.6: Complex intent with multiple users

In the first part of the performance testing, the refinement, parsing and translation are
tested. The measurements are performed over 1000 iterations. In each iteration a random
intent from the particular group is chosen. Finally, the raw measurements are collected
in a file. Moreover, statistics such as the mean and the standard deviation are computed
for each group and variation combination separately. These statistics are also written
into a file. Finally, a bar chart is plotted using the mean values from the measurements
for every benchmark. The bar chart displays error bars which correspond to the 95%
confidence interval. The formula used to calculate the confidence interval is shown in
Equation (5.1), where x̄ denotes the mean, σ the standard deviation, and n the number
of samples. It is important to note, that the calculation of confidence interval assumes a
normal distribution of the measurements.

CI95 = x̄± 1.96× σ√
n

(5.1)

38 CHAPTER 5. EVALUATION

Simple Intermediate Complex
0

1

2

3

4

5
M

ea
n

du
ra

tio
n

(m
s)

1.37

2.86 2.94
3.38

5.13 5.17

Average duration of refinement for 1000 iterations
Single
Multi

Figure 5.1: Average duration of refinement

Figure 5.1 shows the average duration of the refinement. The results for the intermediate
and complex intents are similar, indicating that the number of parameters does not affect
the performance of the refinement. There is a measurable difference in performance when
comparing the simple intents with the intermediate or complex ones, indicating that the
specification of a non-default currency affects the performance of the refinement. The
duration to refine intermediate and complex intents increases compared to simple ones.
Finally, there is a difference in performance for all categories of intents between the
single- and multi-user variations, indicating that the specification of multiple users affects
the performance of the refinement. Specifically, the multi-user variations have a higher
duration for all categories, than the single-user variations.

5.1. PERFORMANCE TESTING 39

Simple Intermediate Complex
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
du

ra
tio

n
(m

s)

1.06 1.08 1.15

2.91 2.93 2.97

Average duration of parsing for 1000 iterations
Single
Multi

Figure 5.2: Average duration of parsing

Figure 5.2 depicts the average duration of the parsing. The results for all categories of
intents are similar. The performance of the parsing is neither affected by the specification
of a non-default currency nor by the number of parameters. However, a difference in
performance can be observed between the single- and multi-user variations of all intent
categories. The parsing of intents that specify multiple users takes longer than intents
specifying only a single user. The relationship is not linear, but close to linear, since the
multi-user variations specify three users instead of a single one.

Simple Intermediate Complex
0.000

0.002

0.004

0.006

0.008

0.010

M
ea

n
du

ra
tio

n
(m

s)

0.01 0.01 0.010.01 0.01 0.01

Average duration of regex-based parsing for 1000 iterations

Single
Multi

Figure 5.3: Average duration of regex-based parsing

40 CHAPTER 5. EVALUATION

Figure 5.3 shows the average duration of the parsing based on regular expressions which
is shown in Listing 5.7. The regex-based parsing outperforms the state-machine-based
parsing for all categories and variations. Moreover, the regex-based approach is neither
affected by the number of parameters, by the specification of a non-default currency nor by
the specification of multiple users. It is important to note, that the state-machine-based
parsing performs validation and the regex-based parsing does not.

1 "^for (?P<users>[\w ,]+?) "
2 "(?:in the (?P<timeframe>\w+))?"
3 "(?:select the (?P<profile>\w+)(?P<filters>[\w ,]+)? blockchain(?: (?:

from (?P<whitelist>[\w ,]+)|except (?P<blacklist>[\w ,]+)))?|select (?P
<blockchain>\w+)) "

4 "(?:with (?P<modifiers>[\w ,]+))?"
5 "(?:until the (?P<interval>\w+) costs reach (?P<currency>\w+)?(?P<

threshold>[0-9.]+)|as default)$"

Listing 5.7: Regular expression for intent parsing

Simple Intermediate Complex
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n
du

ra
tio

n
(m

s)

0.17

1.52 1.56

0.41

1.73 1.77

Average duration of translation for 1000 iterations
Single
Multi

Figure 5.4: Average duration of translation

Figure 5.4 illustrates the average duration of the translation. The results for the interme-
diate and complex intents are similar. Once again, there is a difference in performance
between the simple intents and the intermediate or complex ones, as already seen in the
refinement. The translation of intermediate and complex intents takes longer than the
simple ones, indicating that the specification of a non-default currency affects the perfor-
mance of the translation. There is a slight difference in performance between the single-
and multi-user variations of all intent categories. However, it is not as significant as for
the parsing.

5.1. PERFORMANCE TESTING 41

In the second part of the performance testing, the refinement benchmark was repeated for
different number of intents, i.e., different number of iterations. Specifically, in the range
from 10 iterations up to 10’000 iterations. These benchmarks were executed for all intent
categories and variations.

0 2000 4000 6000 8000 10000
Number of intents

0

10

20

30

40

50

60

To
ta

l d
ur

at
io

n
(s

)
Total duration of refinement

Simple (single)
Intermediate (single)
Complex (single)
Simple (multi)
Intermediate (multi)
Complex (multi)

Figure 5.5: Total duration of refinement

Figure 5.5 depicts the total duration of the refinement. The results clearly show a linear
relationship between the number of intents and the total duration for the refinement.
Increasing the number of intents increases the total duration of the refinement process.
The duration of the refinement of simple intents in the single-user variation increase the
slowest. The duration of the refinement of intermediate and complex intents in the single-
user variation increase slightly faster. The duration of the refinement of simple intents
in the multi-user variation increases similar to intermediate and complex intents in the
single-user variation. The duration of the refinement of intermediate and complex intents
in the multi-user variation increases the fastest.

5.1.3 Discussion

In summary, the performance of the refinement is affected by the specification of multiple
users and a non-default currency. It is not affected by the number of parameters. The
performance of the parsing decreases when specifying multiple users. It is not clear what
exactly causes this performance penalty in the parsing. The performance of the trans-
lation decreases when specifying a non-default currency. In case a non-default currency
is specified, the translation performs a database query to obtain the exchange rate to
convert the threshold value. It is to expect that database interactions introduce latency
and some variance in performance.

42 CHAPTER 5. EVALUATION

The performance of the refinement of simple intents is dominated by the parsing for
single- and multi-user variations. The performance of the refinement of intermediate and
complex intents is dominated by the translation for single-user variations. However, the
performance of the refinement of intermediate and complex intents is dominated by the
parsing for multi-user variations.

The regex-based parsing outperforms the state-machine-based parsing. However, the
regex-based approach does not support validation of the intents. Moreover, the main-
tainability is more difficult compared to the state-machine-based parsing. Therefore, the
gain in performance does not seem to be worth it, especially considering that the state-
machine-based parsing is still in the milliseconds range.

Finally, all intent categories and variations exhibit a linear relationship between the num-
ber of intents and total duration of the refinement.

5.2 Survey on Blockchain Usage Requirements

In total the survey had 19 respondents from roughly 100 recipients of the email which
corresponds to a response rate of 19%. The questionnaire is included in Appendix A. Some
of the Questions (Q) are evaluated for different categories of respondents separately, while
others are evaluated for all respondents. Respondents are categorized into technical and
non-technical individuals based on their answers to Q2 of the questionnaire. Furthermore,
respondents are also categorized into computer-science-related, business-related, and other
backgrounds based on their answers to Q1 of the survey.

Technical Non-technical Comp Sci Business Other
0

2

4

6

8

10

12

Nu
m

be
r o

f r
es

po
nd

en
ts

13

6

12

7

0

Groups of respondents
Technical Knowledge
Background

Figure 5.6: Groups of respondents

Figure 5.6 shows the categories of respondents based on their level of technical knowledge
of blockchains, and background respectively. 13 respondents are considered to have a

5.2. SURVEY ON BLOCKCHAIN USAGE REQUIREMENTS 43

technical knowledge of blockchain technology, and 6 respondents are considered to have a
non-technical understanding of blockchain technology. The respondents who selected the
first answer of Q2, stating “I know technical details, such as different consensus mech-
anisms, address formats, node types (e.g., miner and peer), and I have used more than
one blockchain implementation.” are considered technical. The remaining respondents
that selected a different answer of Q2 are considered non-technical. Similarly, 12 respon-
dents who selected either “Computer Science” or “Information Systems” as answer to Q1
have a computer-science-related background. The remaining 7 respondents selected either
“Banking and Finance” or “Business Administration” as answer to Q1 and therefore have
a business-related background. No respondent stated to have another background in Q1
and therefore the corresponding category is empty.

The following Evaluation Questions (EQ) are answered with the responses of the survey.
Moreover, a Hypothesis (H) was defined for a subset of the evaluation questions.

EQ1: Do non-technical individuals consider fewer attributes (compared to
technical ones) of a blockchain implementation when selecting a blockchain?

H1: On average, non-technical individuals consider fewer attributes, e.g., deployment type
and costs, when selecting a blockchain implementation, because they lack the technical
knowledge. On the opposite side, technical individuals tend to consider more attributes,
such as throughput, latency, and consensus mechanisms.

Technical Non-technical
0

1

2

3

4

M
ea

n
nu

m
be

r o
f a

ttr
ib

ut
es

3.23
2.83

Average number of attributes considered when selecting a Blockchain

Figure 5.7: Average number of attributes considered when selecting a blockchain

Figure 5.7 depicts the average number of attributes considered when selecting a particular
blockchain implementation by technical and non-technical individuals. On average, tech-
nical respondents consider 3.23 attributes, and non-technical respondents consider 2.83
attributes. Therefore, the hypothesis holds because technical individuals in fact consider
more attributes than non-technical individuals.

44 CHAPTER 5. EVALUATION

Table 5.3: Overview of unlisted responses

Response Type Number of respondents
Smart contract language capabilities Attribute 1
Sharding Feature 1

EQ2: Which attributes of a blockchain implementation (that were not listed
as an option in Q4) do respondents consider? What ratio of the respondents
considers these attributes?

Table 5.3 lists the only attribute that was mentioned by a respondent that was not pro-
vided as an option to the question. The attribute is “smart contract language capabilites”.
This option corresponds to the turing complete filter already available in low-level policies.

EQ3: Which is the feature (non-native to blockchains) that most respondents
would like an application (e.g., that stores data in a blockchain) to provide?

Encryption Off-chain storage Redundancy Sharding
0

2

4

6

8

10

12

14

Nu
m

be
r o

f r
es

po
nd

en
ts

13
15

5

1

Number of respondents wanting additional features

Figure 5.8: Number of respondents wanting an additional feature

Figure 5.8 illustrates for each feature the number of respondents that selected it in Q5.
Respondents were able to select multiple features and could even add other features.
The results show that the most wanted feature is “off-chain storage”, i.e., an automated
computation of the checksum of the transaction data which can be stored in a blockchain.
This feature is especially useful for large data, e.g., a large number of measurements from
sensors to reduce the size of the data. An implementation of this feature could then store
the actual data in conventional databases or filesystems and only store the checksum
in a blockchain to reduce the transaction costs. The second most selected feature is
“encryption”. An implementation of this feature could encrypt the transaction data before

5.2. SURVEY ON BLOCKCHAIN USAGE REQUIREMENTS 45

storing it in a blockchain and would have to keep track of the encryption key. This feature
is considered especially useful, when dealing with sensitive data. “Redundancy” means
storing of a redundant copy of the transaction data in a conventional database is only
selected by 5 respondents and “sharding” only by 1 respondent.

EQ4: Which additional features that was not listed would respondents like
an application that stores data in a blockchain to provide? What ratio of the
respondents considers these features?

Table 5.3 summarizes all the features that were not explicitly listed as an option in Q5
but were added by respondents via the custom field. The only unlisted feature that was
mentioned by respondents was “sharding” which was mentioned only by 1 respondent.

EQ5: Do respondents perceive complex queries (Example C) (in a particular
representation) as less intuitive than simple queries (Example A or B), i.e.,
does the complexity of the query affect the intuitiveness of the query?

H2: Simple queries (either written in pseudo-code or natural language) are perceived as
more intuitive than complex ones.

In Q6 and Q7 two alternative representations for blockchain selection statements are pre-
sented. A pseudo-code representation is used in Q6, and a natural language formulation is
used in Q7. The examples used in both representations correspond to the same selection
criteria. Each representation provides examples A, B, and C. These examples can be cat-
egorized based on their complexity. Examples A and B specify only required parameters
and are considered simple. Example C specifies the required parameters and a optional
parameters as well and is therefore considered complex. Respondents were asked to rate
these examples in the different representations based on their intuitive understanding. A
respondent could select a score from 1 to 5 or select N/A for not applicable. This rating
scale corresponds to a Likert scale.

Simple Complex
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
sc

or
e

3.08
2.56

Average score of different complexities

Figure 5.9: Average scores of different complexities

46 CHAPTER 5. EVALUATION

Table 5.4: Missing values based on complexity

Complexity Missing values
Simple 5
Complex 2
Total 7

Figure 5.9 shows the average scores of the simple examples and the complex examples.
On average, simple examples were rated as more intuitive than complex ones with a mean
score of 3.08 and 2.56, respectively. Therefore the hypothesis holds, and the complexity
in fact influences the perceived intuitiveness. Table 5.4 shows the missing values based on
the complexity of the examples. In total 7 values from Q6 and Q7 were missing because
the respondents selected the N/A option. These missing values were excluded from the
evaluation, i.e., the statistics such as the mean are computed without considering these
values.

EQ6: Which of the two presented representations (i.e., pseudo-code and nat-
ural language representations) do respondents perceive as more intuitive?

H3.1: Non-technical respondents find the natural language representation more intuitive.

H3.2: In contrast, technical respondents find the low-level policy more (or equally) as
intuitive as the natural language representation.

All Technical Non-technical
0

1

2

3

4

M
ea

n
sc

or
e

2.62 2.55
2.83

3.16 3.18 3.11

Average score of different representations by technical knowledge
Pseudocode
Natural language

Figure 5.10: Average scores of different representations by technical knowledge

Figure 5.10 shows the average scores of the pseudo-code and natural language representa-
tions. An example intent specified in pseudo-code is shown in Listing 5.8 and in natural

5.2. SURVEY ON BLOCKCHAIN USAGE REQUIREMENTS 47

Table 5.5: Missing values based on representation

Category Representation Missing values

Technical Pseudo-code 1
Natural language 0

Non-technical Pseudo-code 6
Natural language 0

Total Pseudo-code 7
Natural language 0

language in Listing 5.9. On average, the natural language representation was perceived as
more intuitive than the pseudo-code representation for all categories. Therefore, H3.1 does
in fact hold, because non-technical individuals perceive the natural language representa-
tion as more intuitive. However, the results also show that even technical individuals
perceive the natural language representation as more intuitive which invalidates H3.2.
Therefore, an intent specified in natural language instead of low level configurations such
as pseudo-code will benefit both technical and non-technical individuals. Table 5.5 shows
the missing values based on the representation of the examples.

1 {
2 "clients": ["B"],
3 "profile": "fastest",
4 "filters": ["private"],
5 "interval": "daily",
6 "currency": "CHF",
7 "threshold": 30
8 }

Listing 5.8: Pseudo-code representation

For client B select the fastest private blockchain until the daily
costs reach CHF 30.

Listing 5.9: Natural language representation

EQ7: Is there a correlation between the priority of aspects for choosing a
blockchain (over a traditional database) and the area of specialization of a
respondent? For example, do computer science specialists prioritize “secu-
rity” higher than other specialists, or do business administration specialists
prioritize “low costs” higher than other specialists?

H4.1: Individuals with informatics-related background prioritize “security” higher than
other specialists.

48 CHAPTER 5. EVALUATION

H4.2: Individuals with business-related background prioritize “low costs” higher than other
specialists.

Computer science Other Business Other
0

1

2

3

4

5

M
ea

n
pr

io
rit

y

2.42 2.29 2.0

2.83

Average priorities for choosing a blockchain by background
Security
Low costs

Figure 5.11: Average priorities for choosing a blockchain

Figure 5.11 depicts the average priorities assigned to the “security” and “low costs” aspects
by background. In fact, respondents with informatics-related background prioritize “secu-
rity” slightly higher than respondents with a different background, on average. Therefore,
H4.1 actually holds. However, respondents with a business-related specialization prioritize
“low costs” lower than respondents with another specialization, on average. Therefore,
H4.2 does not hold.

5.2.1 Discussion

The survey was conducted over a period of 1 month and had 19 respondents. The respon-
dents are categorized into technical and non-technical users based on their knowledge of
blockchain technology. More than two third of the respondents are considered technical.
Therefore, the findings for technical users have a higher significance than the findings
related to non-technical individuals. Furthermore, the participation in the survey was
voluntary. Therefore, it is possible that the results suffer from a self-selection bias.

The results show that in fact technical users consider more attributes of a blockchain
implementation in the selection process than non-technical users. Therefore, a solution
supporting non-technical users in the selection process might compensate the lack of
the technical knowledge. Moreover, the complexity of intents does affect the perceived
comprehension of the intent. Simple intents with fewer parameters are perceived as more
intuitive than complex ones with many different parameters. Overall, intents specified in
natural language are perceived as more intuitive than intents specified in pseudo-code.

5.2. SURVEY ON BLOCKCHAIN USAGE REQUIREMENTS 49

Further, there is only a slight difference when comparing the results from technical and
non-technical respondents separately. Therefore, it is assumed that technical and non-
technical users benefit from intents specified in natural language equally.

50 CHAPTER 5. EVALUATION

Chapter 6

Summary and Future Work

This thesis introduces the Intent Refinement Toolkit (IRTK). The IRTK refines intents
specified in natural language into low-level policies. As part of the refinement, the options
specified in the intent are parsed and then translated into low-level policies. Moreover,
the intents are validated both during parsing and translation.

The IRTK is designed to be used in a Policy-based Blockchain Agnostic Framework (PB-
BAF) [30]. It acts as an abstraction layer for low-level policies, by allowing the specifica-
tion without knowing the underlying technical details. Currently, not all options that are
available in the intent specification language are supported by the Policy-based Blockchain
Selection (PBS) framework.

The performance evaluation of the IRTK has uncovered several findings. The first finding
is that the performance is affected by the specification of a non-default currency and the
number of users for which an intent is specified. It is not affected by the number of optional
parameters that are specified. The specification of a non-default currency introduces a
database access during the translation to retrieve the corresponding exchange rate. In
fact, this database access causes a decrease in performance. Similarly, the specification of
multiple users decreases the performance of the parsing. The performance evaluation also
showed that the duration and the number of intents have a linear relationship. Therefore,
refining more than one intent takes linearly more time than parsing a single intent. Finally,
an alternative implementation of the parsing based on regular expressions exhibits better
performance. However, it is more difficult to maintain and does not allow intent validation.

As part of this thesis, a survey was conducted to assess the blockchain usage requirements
of technical and non-technical users. The results showed that on average non-technical
users consider less attributes of a blockchain implementation than technical ones. This fact
may be attributed to the fact, that non-technical users lack the technical understanding
of these attributes. The most desired features by respondents were off-chain storage and
encryption. Off-chain storage computes a checksum of the data and only stores this
checksum in a blockchain which can reduce the size of the data and price, e.g., when
storing large amounts of sensor measurements. Storing sensitive data in a blockchain
might not be possible due to regulation. However, encryption of the data might solve this

51

52 CHAPTER 6. SUMMARY AND FUTURE WORK

issue under some circumstances. Finally, the results indicate that both technical and non-
technical individuals perceive intents specified in natural language as more intuitive than
low-level policies. Therefore, even technical individuals might benefit from an abstraction
layer as provided by the IRTK.

6.1 Future Work

The prototype of the IRTK focuses on refining intents into corresponding low-level poli-
cies. These low-level policies can be used with the PBS framework which acts as PDP.
However, currently not all parameters provided by the IRTK are actually supported by
the PBS framework. Specifically, these parameters are the encryption and redundancy
modifiers, and the stable, popular, and cheap filters. Therefore, the implementation
of the PBS framework has to be extended to support these parameters, otherwise they
will be ignored. Alternatively, encryption and redundancy could also be implemented in
a separate component that intercepts incoming transactions. However, an implementa-
tion of this approach might result in a lot of overhead and redundancy. Furthermore, to
quantify the stability and popularity of a blockchain a model has to be defined for the
calculation of these values.

The IRTK relies on a database to retrieve exchange rates for non-default currencies such
as Swiss Francs. These exchange rates are used to convert cost thresholds into the default
currency which is US Dollars. Exchange rates for currencies are dynamic and therefore
have to be updated over time. One possible approach fetches the exchange rates from
an external service on every incoming request. However, this approach might result in
a lot of network traffic. A better solution might be to implement monitor services that
periodically fetch these exchange rates.

Finally, the IRTK is designed as a library. Although, it can be used directly with the
Python interpreter this might not be an optimal solution. Instead, it could be integrated
in an implementation of the PBBAF which would also expose a web interface.

Bibliography

[1] M. H. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. E. Carpen-
ter, S. Jiang, and L. Ciavaglia, Autonomic Networking: Definitions and Design
Goals. RFC 7575, June 2015.

[2] M. Belotti, N. Božić, G. Pujolle, and S. Secci, A Vademecum on Blockchain
Technologies: When, Which and How, in IEEE Communications Surveys Tutorials,
2019, pp. 1–47.

[3] Bitinfocharts, Bitinfocharts: Blockchain statistics, 2019. http:
//bitinfocharts.com, last visited October 13, 2019.

[4] T. Bocek, B. B. Rodrigues, T. Strasser, and B. Stiller, Blockchains Ev-
erywhere - a Use-Case of Blockchains in the Pharma Supply-Chain, in IFIP/IEEE
Symposium on Integrated Network and Service Management (IM 2017), Lisbon, Por-
tugal, May 2017, pp. 772–777.

[5] V. Buterin, A Next-Generation Smart Contract and Decentralized Application Plat-
form, 2014. https://github.com/ethereum/wiki/wiki/White-Paper, last visited
October 13, 2019.

[6] R. Chadha, H. Cheng, Y.-H. Cheng, C.-Y. Chiang, A. Ghetie, G. Levin,
and H. Tanna, Policy-based Mobile Ad Hoc Network Management, 07 2004, pp. 35–
44.

[7] W. Chao and S. Horiuchi, Intent-based cloud Service Management, in Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN 2018), Feb
2018, pp. 1–5.

[8] M. Charalambides, P. Flegkas, G. Pavlou, A. K. Bandara, E. C. Lupu,
A. Russo, N. Dulav, M. Sloman, and J. Rubio-Loyola, Policy Conflict Anal-
ysis for Quality of Service Management, in IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY 2005), Stockholm, Sweden, Sweden,
June 2005, pp. 99–108.

[9] M. Charalambides, P. Flegkas, G. Pavlou, J. Rubio-Loyola, A. Ban-
dara, E. Lupu, A. Russo, M. Sloman, and N. Dulay, Dynamic Policy Analysis
and Conflict Resolution for DiffServ Quality of Service Management, in IEEE/IFIP
Network Operations and Management Symposium (NOMS 2006), Vancouver, BC,
Canada, January 2006, pp. 294–304.

53

http://bitinfocharts.com
http://bitinfocharts.com
https://github.com/ethereum/wiki/wiki/White-Paper

54 BIBLIOGRAPHY

[10] S. Chen, J. Zhang, R. Shi, J. Yan, and Q. Ke, A Comparative Testing on
Performance of Blockchain and Relational Database: Foundation for Applying Smart
Technology into Current Business Systems, in Distributed, Ambient and Pervasive
Interactions (DAPI 2018), Las Vegas, NV, USA, July 2018, pp. 21–34.

[11] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, Intent-Based Net-
working - Concepts and Overview. Work in Progress, https://www.ietf.org/id/
draft-clemm-nmrg-dist-intent-03.txt, last visited December 10, 2019.

[12] V. Clincy and H. Shahriar, Blockchain Development Platform Comparison, in
2019 IEEE 43rd Annual Computer Software and Applications Conference (COMP-
SAC), vol. 1, Jul 2019, pp. 922–923.

[13] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Watten-
hofer, On Scaling Decentralized Blockchains, in Financial Cryptography and Data
Security (FC 2016), Christ Church, Barbados, February 2016, pp. 106–125.

[14] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, The Ponder Policy Spec-
ification Language, in Proceedings of the International Workshop on Policies for
Distributed Systems and Networks, POLICY ’01, London, UK, UK, 2001, Springer-
Verlag, pp. 18–38.

[15] S. Davy, B. Jennings, and J. Strassner, The Policy Continuum - A Formal
Model, in Proc. of the 2nd IEEE International Workshop on Modelling Autonomic
Communications Environments, MACE, (2007), pp. 65–79.

[16] Y. Elkhatib, G. Coulson, and G. Tyson, Charting an Intent Driven Network,
in 2017 13th International Conference on Network and Service Management (CNSM),
Nov 2017, pp. 1–5.

[17] S. D. Foundation, Fees | Stellar Developers, 2019. , https://www.stellar.org/
developers/guides/concepts/fees.html, last visited November 10, 2019.

[18] Y. Han, J. Li, D. Hoang, J. Yoo, and J. W. Hong, An Intent-based Network
Virtualization Platform for SDN, in International Conference on Network and Service
Management (CNSM 2016), Oct 2016, pp. 353–358.

[19] T. Hegnauer, Design and Development of a Blockchain Interoperability API, Mas-
ter’s thesis, Zürich, Switzerland, February 2019.

[20] A. Jacobs, R. Pfitscher, R. Ferreira, and L. Granville, Refining Network
Intents for Self-Driving Networks, 08 2018, pp. 15–21.

[21] J. Kang, J. Lee, V. Nagendra, and S. Banerjee, LMS: Label Management
Service for intent-driven Cloud Management, in IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM 2017), May 2017, pp. 177–185.

[22] D. Lakic, Design and Implementation of a Policy-based Blockchain Selection Frame-
work, Master’s thesis, Zürich, Switzerland, June 2019.

https://www.ietf.org/id/draft-clemm-nmrg-dist-intent-03.txt
https://www.ietf.org/id/draft-clemm-nmrg-dist-intent-03.txt
https://www.stellar.org/developers/guides/concepts/fees.html
https://www.stellar.org/developers/guides/concepts/fees.html

BIBLIOGRAPHY 55

[23] C. Li, O. Havel, P. Martinez-Julia, J. Nobre, and D. Lopez,
Intent Classification. Work in Progress, https://www.ietf.org/id/
draft-li-nmrg-intent-classification-02.txt, last visited December 10,
2019.

[24] E. C. Lupu and M. Sloman, Conflicts in Policy-based Distributed Systems Man-
agement, in IEEE Transactions on Software Engineering, vol. 25, November 1999,
pp. 852–869.

[25] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, 2009. http://
www.bitcoin.org/bitcoin.pdf, last visited October 10, 2019.

[26] N. W. Paton and O. Díaz, Active Database Systems, ACM Comput. Surv., 31
(1999), pp. 63–103.

[27] L. Prechelt, An empirical comparison of C, C++, Java, Perl, Python, Rexx, and
Tcl for a search/string-processing program., (2000).

[28] D. Puthal, N. Malik, S. Mohanty, E. Kougianos, and G. Das, Everything
You Wanted to Know About the Blockchain: Its Promise, Components, Processes,
and Problems, in IEEE Consumer Electronics Magazine, vol. 7, July 2018, pp. 6–14.

[29] A. Riekstin, G. Januário, B. Rodrigues, V. Nascimento, T. Carvalho,
and C. Meirosu, A Survey of Policy Refinement Methods as a Support for Sus-
tainable Networks, IEEE Communications Surveys & Tutorials, 18 (2015), pp. 1–1.

[30] E. Scheid, B. Rodrigues, and B. Stiller, Toward a Policy-based Blockchain
Agnostic Framework, in IFIP/IEEE Symposium on Integrated Network and Service
Management (IM 2019), April 2019, pp. 609–613.

[31] E. J. Scheid, T. Hegnauer, B. Rodrigues, and B. Stiller, Bifröst: a Mod-
ular Blockchain Interoperability API, in IEEE Conference on Local Computer Net-
works (LCN 2019), Osnabrück, Germany, October 2019, pp. 1–9. Accepted. To be
published.

[32] E. J. Scheid, D. Lakic, B. Rodrigues, and B. Stiller, PleBeuS: a Policy-
based Blockchain Selection Framework, in IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS 2020), Budapest, Hungary, April 2020, pp. 1–9. Ac-
cepted. To be published.

[33] E. J. Scheid, C. C. Machado, R. L. dos Santos, A. E. Schaeffer-Filho,
and L. Z. Granville, Policy-based Dynamic Service Chaining in Network Func-
tions Virtualization, in IEEE Symposium on Computers and Communication (ISCC
2016), June 2016, pp. 340–345.

[34] E. J. Scheid, C. C. Machado, M. F. Franco, R. L. dos Santos, R. P.
Pfitscher, A. E. Schaeffer-Filho, and L. Z. Granville, INSpIRE: Inte-
grated NFV-based Intent Refinement Environment, in IFIP/IEEE Symposium on
Integrated Network and Service Management (IM 2017), May 2017, pp. 186–194.

https://www.ietf.org/id/draft-li-nmrg-intent-classification-02.txt
https://www.ietf.org/id/draft-li-nmrg-intent-classification-02.txt
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

56 BIBLIOGRAPHY

[35] R. S. Scowen, Extended BNF - A Generic Base Standard, in Proceedings 1993
Software Engineering Standards Symposium, Brighton, UK, August 1993, IEEE,
pp. 25–34.

[36] M. Sloman, Policy driven Management for Distributed Systems, vol. 2, Springer,
1994, pp. 333–360.

[37] Q. Sun, W. Liu, and K. Xie, An Intent-driven Management Framework. Work
in Progress, https://www.ietf.org/id/draft-sun-nmrg-intent-framework-00.
txt, last visited December 10, 2019.

[38] T. Szyrkowiec, M. Santuari, M. Chamania, D. Siracusa, A. Autenrieth,
V. Lopez, J. Cho, and W. Kellerer, Automatic Intent-based Secure Service
Creation Through a Multilayer SDN Network Orchestration, IEEE/OSA Journal of
Optical Communications and Networking, 10 (2018), pp. 289–297.

[39] K. Teja, M. Shravani, C. Y. Simha, and M. R. Kounte, Secured voting
through Blockchain technology, in 2019 3rd International Conference on Trends in
Electronics and Informatics (ICOEI), April 2019, pp. 1416–1419.

[40] D. C. Verma, Simplifying Network Administration Using Policy-Based Manage-
ment, in IEEE Network, vol. 16, March 2002, pp. 20–26.

[41] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen,
and D. I. Kim, A Survey on Consensus Mechanisms and Mining Strategy Manage-
ment in Blockchain Networks, IEEE Access, 7 (2019), pp. 22328–22370.

[42] K. Wüst and A. Gervais, Do you Need a Blockchain?, in 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), June 2018, pp. 45–54.

https://www.ietf.org/id/draft-sun-nmrg-intent-framework-00.txt
https://www.ietf.org/id/draft-sun-nmrg-intent-framework-00.txt

Abbreviations

API Application Programming Interface
BNF Backus-Naur Form
CBR Case-based Reasoning
CLI Command Line Interface
DFA Deterministic Finite Automaton
dPoS Delegated Proof-of-Stake
EBNF Extended Backus-Naur Form
ECA Event Condition Action
GUI Graphical User Interface
IBN Intent-based Networking
IETF Internet Engineering Task Force
IRTK Intent Refinement Toolkit
JSON JavaScript Object Notation
MIB Management Information Base
NLTK Natural Language Toolkit
NV Network Virtualization
ORM Object-Relational Mapper
PBBAF Policy-based Blockchain Agnostic Framework
PBNM Policy-based Network Management
PBS Policy-based Blockchain Selection
PDP Policy Decision Point
PEP Policy Enforcement Point
PIB Policy Information Base
PMT Policy Management Tool
PoA Proof-of-Authority
PoS Proof-of-Stake
PoW Proof-of-Work
REST Representational State Transfer
RFC Request for Comments
SDN Software Defined Networking
SLA Service Level Agreement
TPS Transactions per Second
VN Virtual Network
VNF Virtual Network Function

57

58 ABBREVIATONS

Glossary

Blockchain A distributed append-only immutable ledger.

Conflicts Conflicting intent or policy options that are invalid in the current configura-
tion.

Exclusions Intent or policy options that are ignored in the current configuration.

Intent An abstract, high-level policy specified in natural language.

Interoperability A characteristic of a system, whose interfaces are completely under-
stood to work with other systems without any restrictions.

Likert Scale A psychometric scale used in research that employs questionnaires. It is a
widely used approach to scaling responses in survey research.

Parsing Parsing of intent options specified in natural language into an instance of inter-
mediate data structure. Intent options are validated as part of the parsing process.

Policy A sequence of condition-action rules.

Refinement Refinement of intents specified in natural language into a set of low-level
policies. High-level policies are parsed into an intermediate data structure and then
translated into low-level policies.

Translation Translation of intent options stored in intermediate data structure into
corresponding low-level policy ones. The outcome of the intent translation is a set
of low-level policies. Policy options are validated as part of the translation process.

Turing Completeness A programming language is said to be turing complete if it can
be used to simulate any turing machine. It is used as a way to express the power
of programming languages. The concept is named after English mathematician and
computer scientist Alan Turing.

Validation Intent and policy options are validated as part of the refinement, i.e., as part
of the parsing and translation. The validation detects conflicts and exclusions which
are handled as part of the refinement.

59

60 GLOSSARY

List of Figures

2.1 PBNM architecture . 6

2.2 Policy continuum . 7

2.3 Generic refinement process . 8

2.4 Blockchain Agnostic Framework architecture 9

4.1 Refinement process . 15

4.2 IRTK architecture . 20

4.3 State chart legend . 21

4.4 State chart overview . 21

4.5 User states . 22

4.6 Timeframe states . 22

4.7 Profile and blockchain states . 22

4.8 Filter states . 23

4.9 Whitelist, blacklist, and modifier states . 23

4.10 Whitelist (a) and blacklist (b) states . 23

4.11 Modifier states . 24

4.12 Cost states . 24

4.13 Default states . 24

5.1 Average duration of refinement . 38

5.2 Average duration of parsing . 39

5.3 Average duration of regex-based parsing 39

61

62 LIST OF FIGURES

5.4 Average duration of translation . 40

5.5 Total duration of refinement . 41

5.6 Groups of respondents . 42

5.7 Average number of attributes considered when selecting a blockchain . . . 43

5.8 Number of respondents wanting an additional feature 44

5.9 Average scores of different complexities . 45

5.10 Average scores of different representations by technical knowledge 46

5.11 Average priorities for choosing a blockchain 48

List of Tables

3.1 Overview of related work . 13

4.1 EBNF notation . 17

4.2 Classification of configuration parameters 17

4.3 Validation types . 25

5.1 Overview of intent categories . 36

5.2 Overview of intent variations . 36

5.3 Overview of unlisted responses . 44

5.4 Missing values based on complexity . 46

5.5 Missing values based on representation . 47

63

64 LIST OF TABLES

Appendix A

Questionnaire

The following email was sent in English and German to students of Blockchain CAS,
and the Blockchains and Overlay Network course on November 1, 2019. When clicking
the link to the survey, which is below indicated by [. . .], participants were presented the
questions stated in this section.

Subject: Survey on Blockchain Usage Requirements

[German version below]

Dear Researcher, Student, User,

Have you ever asked yourself which is the optimal blockchain to use for a particular use
case? The wide variety of different blockchains and cryptocurrencies (over 2900 according
to CoinMarketCap [1]) makes the selection of a suitable blockchain difficult, especially for
non-technical users.

Thus, the Communication Systems Group CSG of the Department of Informatics IfI
explores approaches that automate and support users in the process of selecting a suitable
blockchain for a particular use case. These approaches allow users to comprehensibly
specify requirements in natural language. Therefore, users need not know the technical
implementation details.

In this sense, the goal of this survey is to evaluate your possible or potential requirements
of blockchains and to compare it to those approaches developed at CSG so far. If you
could spend approximately 10 minutes of your valuable time, it is recommended to use a
desktop computer or laptop to fill in the survey for an optimized presentation.

Please use this link to the survey: [. . .]

We would really appreciate, if you could run through this survey. All data collected in
this questionnaire is anonymized and applied for research purposes only.

Thank you and best regards,
Patrick Widmer

65

66 APPENDIX A. QUESTIONNAIRE

Eder John Scheid
Burkhard Stiller
Communication Systems Group CSG, Institut für Informatik IfI

[1] CoinMarketCap. “Cryptocurrencies by Market Capitalization”. Available at https:
//coinmarketcap.com/

Survey on Blockchain Usage Requirements

According to CoinMarketCap [1], more than 2900 cryptocurrencies exist. Most of them
run their own blockchain implementation focusing on specific features, such as privacy or
performance. With this wide variety of different blockchain implementations, it is difficult
for non-technical users to understand key or even minor differences. Thus, even a selection
of a blockchain that suits a dedicated use case is difficult.

This questionnaire collects insights on how requirements defined by non-technical users
can be potentially translated into low-level (i.e., covering the necessary technical details)
blockchain-selection rules.

Please answer the questions in the presented order. If you have any difficulties understand-
ing a question or answer, simply skip it and leave a remark at the end of the questionnaire.

This questionnaire contains 7 questions and takes approximately 10 minutes to complete.
All data collected in this questionnaire is anonymized and applied only to research pur-
poses.

[1] https://coinmarketcap.com/

Q1: What is your area of specialization? [Single choice]

• Banking and Finance

• Business Administration

• Information Systems

• Computer Science

• <Other>

Q2: What do you know about blockchains? [Single choice]

• I know technical details, such as different consensus mechanisms, address formats,
node types (e.g., miner and peer), and I have used more than one blockchain im-
plementation.

• I only know how to use a blockchain, e.g., use a wallet application to send/receive
cryptocurrencies.

• I only heard of the blockchain concept from media.

https://coinmarketcap.com/
https://coinmarketcap.com/
https://coinmarketcap.com/

67

• Nothing

Q3: Prioritize the following technical and measurable reasons (from most
important (1) to least important (6)) for choosing a blockchain instead of a
conventional database? [Ranking]

Please note that no two options can have the same priority.

1. Immutability

2. Decentralization

3. Scalability

4. Security

5. Performance

6. Low costs

Q4: Which of the following attributes of a blockchain implementation do you
consider when selecting a blockchain? [Multiple choice]

• Deployment type (private, consortium, public)

• Consensus mechanism

• Transaction costs

• Latency (block time)

• Throughput (transaction rate)

• Transaction size

• <Other>

Q5: Suppose you have access to an application that stores and retrieves data in
a blockchain for you. Which additional functionality or feature (not provided
by the blockchain) should such an application provide? [Multiple choice]

• Encryption (encrypt transaction data before storing in a blockchain)

• Redundancy (store a copy of transaction data in a conventional database)

• Off-chain storage (only store hash of transaction data in a blockchain)

• <Other>

68 APPENDIX A. QUESTIONNAIRE

Suppose you have access to an application that helps you to choose the most suitable
blockchain implementation for a client with specific requirements. Questions 6 and 7
present two possible ways of representing these requirements (one using pseudo-code and
one using natural language). Each representation contains three examples on how to
specify clients, blockchain attributes, features, and costs.

Q6: How intuitive do you consider the following statements to specify what
type of blockchain should be selected for the client? Please state your answer
on a scale from 1 to 5. [Likert scale]

1 {
2 "clients": ["A"],
3 "profile": "cheapest",
4 "default": true
5 }

not at all(1) not very(2) neutral(3) somewhat(4) very(5) N/A(6)

1 {
2 "clients": ["B"],
3 "profile": "fastest",
4 "filters": ["private"],
5 "interval": "daily",
6 "currency": "CHF",
7 "threshold": 30
8 }

not at all(1) not very(2) neutral(3) somewhat(4) very(5) N/A(6)

1 {
2 "clients": ["A", "B", "C"],
3 "profile": "fastest",
4 "filters": ["private", "stable", "popular"],
5 "blacklist": ["Multichain"],
6 "modifiers": ["encryption", "redundancy"],
7 "interval": "daily",
8 "currency": "CHF",
9 "threshold": 30

10 }

not at all(1) not very(2) neutral(3) somewhat(4) very(5) N/A(6)

69

Q7: How intuitive do you consider the following alternative representation of
the same statements as in Question 6? Please state your answer on a scale
from 1 to 5. [Likert scale]

For client A, select the cheapest blockchain as default.

not at all(1) not very(2) neutral(3) somewhat(4) very(5) N/A(6)

For client B, select the fastest private blockchain until the daily
costs reach CHF 30.

not at all(1) not very(2) neutral(3) somewhat(4) very(5) N/A(6)

For client A, B and C, select the fastest private, stable, and popular
blockchain, except Multichain, then apply encryption and redundancy
until the daily costs reach CHF 30.

not at all(1) not very(2) neutral(3) somewhat(4) very(5) N/A(6)

Q: Do you have any remarks that should be considered? [Open ended]

70 APPENDIX A. QUESTIONNAIRE

Appendix B

Installation Guidelines

The IRTK prototype is implemented in Python. It requires Python version 3.7 or later.
Other dependencies are the nltk, the Natural Language Toolkit to tokenize intents,
sqlalchemy as ORM, psycopg2 as database driver and requests for interacting with
the PBS API. During the development to run the tests ddt is required for data-driven
testing.

B.1 Dependencies

Create a virtual environment:

$ python -m venv venv

Activate the virtual environment:

$ source venv/bin/activate

Install the dependencies:

(venv) $ pip install -r requirements.txt

Deactivate the virtual environment:

(venv) $ deactivate

71

72 APPENDIX B. INSTALLATION GUIDELINES

B.2 Database

First, start (or alternatively enable) the database service:

systemctl start posgresql.service

Switch to the postgres user:

$ sudo -iu postgres

or without sudo:

$ su
su -l postgres

Create a new database:

[postgres]$ createdb irtk

Restore the database dump:

[postgres]$ psql irtk < db_dump

This will seed the conversion table of the irtk database with exchange rates for CHF and
EUR which are needed for the intent translation. Specifically, exchange rates are required
only for intents specifying a non-default currency such as Swiss Francs.

B.3 Configuration

The IRTK configuration file is located under irtk/config.py. The URIs of the PDP
API and the database can be configured in this file. Moreover, it allows the customization
of various options.

B.4. TESTS 73

1 PDP_API_ENDPOINT_URI = ""
2 DATABASE_URI = ""
3
4 MIN_TX_RATE = ...
5 MAX_TX_COST = ...
6 MIN_POPULARITY = ...
7 MIN_STABILITY = ...
8
9 TIME_DAY_START = ""

10 TIME_AFTERNOON_START = ""
11 TIME_NIGHT_START = ""

B.4 Tests

The IRTK defines unit test cases for the parser and translation. To run these test cases,
we can simply use the discover functionality provided by the unittest package as shown
below.

$ python -m unittest discover irtk

B.5 Usage

The IRTK exposes a refine function and a Parser and Translator classes. The refine
function acts as a facade for the parsing and translation. However, it provides no control
over the parsing and translation. Parser and Translator allow to control the parsing and
translation (e.g., incremental parsing).

Refinement

1 from irtk import refine
2
3 policies = refine(
4 "for client"
5 " select the cheapest blockchain"
6 " until the daily costs reach 30"
7)

The above example shows how to refine an intent into low-level policies. The refinement
parses the intent and translates it into low-level policies.

74 APPENDIX B. INSTALLATION GUIDELINES

Parsing and Translation

Alternatively, the parsing and translation of the intent can be done manually.

1 from irtk import Parser, Translator
2
3 parser = Parser()
4 intent = parser.parse(
5 "for client"
6 " select the cheapest blockchain"
7 " until the daily costs reach 30"
8)
9

10 translator = Translator()
11 policies = translator.translate(intent)

This example shows the basic usage of the IRTK to parse an intent and then translate it
into low-level policies.

B.6 Troubleshooting

LookupError: Resource punkt not found

LookupError: Resource punkt not found.
Please use the NLTK Downloader to obtain the resource:

>>> import nltk
>>> nltk.download(’punkt’)

Attempted to load tokenizers/punkt/PY3/english.pickle

This error message indicates that the punkt resource from the nltk data is missing. It is
required for tokenizing the intents. To resolve the issue run:

$ python -m nltk.downloader punkt

B.6. TROUBLESHOOTING 75

sqlalchemy.exc.OperationalError: (psycopg2.OperationalError) could not
connect to server: Connection refused

sqlalchemy.exc.OperationalError: (psycopg2.OperationalError) could not
connect to server: Connection refused

Is the server running on host "localhost" (::1) and accepting
TCP/IP connections on port 5432?

could not connect to server: Connection refused
Is the server running on host "localhost" (127.0.0.1) and

accepting
TCP/IP connections on port 5432?

This error message occurs when the database cannot be reached. There are many possible
causes. Make sure that the database is actually running under the specified URI. The
database URI can be specified in the configuration file, i.e., irtk/config.py.

ConnectionRefusedError: [Errno 111] Connection refused

requests.exceptions.ConnectionError: HTTPConnectionPool(host=’localhost
’, port=3000): Max retries exceeded with url: /api/policies (Caused by
NewConnectionError(’<urllib3.connection.HTTPConnection object at 0
x7f3711fb13d0>: Failed to establish a new connection: [Errno 111]
Connection refused’))

This error message occurs when the API endpoint of the Policy-based Blockchain Selection
Framework cannot be reached. There are many possible causes. Make sure that the
endpoint is actually running under the specified address. The URI of the PDP API
endpoint can be specified in the configuration file, i.e., irtk/config.py.

76 APPENDIX B. INSTALLATION GUIDELINES

Appendix C

Contents of the CD

The contents of the CD is organized as follows:

Code The source code of the IRTK prototype as a git repository.

Data The measurements collected from the performance evaluation and the responses
from the survey. Also contains the scripts to run the benchmarks and the evaluation
of the survey responses as well as the scripts to generate the corresponding figures.
It also contains the generated figures. Also a git repository including all the version
information.

Protocols The protocols of the weekly meetings documenting the progress and discus-
sions.

Slides The slides of the midterm presentation.

Thesis The latex source code and other files of this thesis. Also contains an already
compiled version of this thesis. A git repository including all the version information.

77

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Background
	Blockchain
	Consensus Mechanism
	Deployment Type
	Performance
	Transaction Costs

	Policy-based Network Management (PBNM)
	PBNM Architecture

	Intent-based Networking (IBN)
	Policy Refinement
	Policy-based Blockchain Agnostic Framework

	Related Work
	Network Management
	Cloud Management
	Discussion

	Intent Refinement Approach
	Design
	Intent Refinement
	Intent Grammar
	Intent Parameters
	Intent Refinement Toolkit (IRTK)
	Intent Parsing
	Intent Translation
	Intent Validation

	Implementation
	Intent Refinement
	Intent Parsing
	Intent Translation
	Intent Validation
	Intent
	Policy

	Evaluation
	Performance Testing
	Test System
	Results
	Discussion

	Survey on Blockchain Usage Requirements
	Discussion

	Summary and Future Work
	Future Work

	Abbreviations
	Glossary
	List of Figures
	List of Tables
	Questionnaire
	Installation Guidelines
	Dependencies
	Database
	Configuration
	Tests
	Usage
	Troubleshooting

	Contents of the CD

