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Abstract—In the production industry, the volume, variety and
velocity of data as well as the number of deployed protocols
increase exponentially due to the influences of IoT advances.
While hundreds of isolated solutions exist to utilize this data, e.g.,
optimizing processes or monitoring machine conditions, the lack
of a unified data handling and exchange mechanism hinders the
implementation of approaches to improve the quality of decisions
and processes in such an interconnected environment.

The vision of an Internet of Production promises the estab-
lishment of a Worldwide Lab, where data from every process
in the network can be utilized, even interorganizational and
across domains. While numerous existing approaches consider
interoperability from an interface and communication system
perspective, fundamental questions of data and information
interoperability remain insufficiently addressed.

In this paper, we identify ten key issues, derived from three
distinctive real-world use cases, that hinder large-scale data
interoperability for industrial processes. Based on these issues
we derive a set of five key requirements for future (IoT) data
layers, building upon the FAIR data principles. We propose
to address them by creating FactDAG, a conceptual data layer
model for maintaining a provenance-based, directed acyclic graph
of facts, inspired by successful distributed version-control and
collaboration systems. Eventually, such a standardization should
greatly shape the future of interoperability in an interconnected
production industry.

Index Terms—Data Management, Data Versioning, Interoper-
ability, Industrial Internet of Things, Worldwide Lab.

I. INTRODUCTION
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Today, the usage of large scale Cyber-Physical Production
Systems (CPPS) is more and more applicable to productive
environments as concepts are maturing [1]. In a nutshell, CPPS
digitize analog processes, e.g., manufacturing processes, by
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applying sensor based data acquisition approaches followed by
data storing and processing concepts known from computer
science [2]. Research in CPPS also focuses on methods to
integrate highly heterogeneous data sets and mixtures of
different communication protocols that are used by the involved
machines [3]. The ever-growing amount of data in the industry –
due to the usage of sensor-systems and interconnected machines
in an Internet of Things (IoT) – needs to be transmitted, stored,
and processed for each machine connected in the system [4].
This progression results in an increase of the total amount of
data at an exponential rate [5], [6].

Therefore, one goal should be to analyze the collected
product data and utilize it in (sophisticated) models to improve
the currently applied production processes. These advance-
ments can be accelerated, if the usage of data from different
companies, manufacturing plants, and machines equipped with
different tools is incorporated as well [7]–[9]. However, any
improvements are only realized, if process data is widely
available and the information from various sources can be
integrated with reasonable effort. Currently data is typically
either (i) not stored at all, (ii) only retained locally, i.e., stored
in isolated data silos, or (iii) not transferable between systems
by different manufacturers due to vendor-specific solutions (as
identified by [10]).

In an interdisciplinary research cluster at RWTH Aachen
University, we plan to tackle the aforementioned problems
with the idea of an Internet of Production (IoP) [11]. A central
goal of an IoP is to establish a Worldwide Lab (WWL) which
enables automated exchanges of process data across domains,
organizational structures, and companies, promising to unlock
unrealized synergies through digitized collaboration [12]. The
idea is that we consider every production step in the WWL
as an experiment so that processes on the other side of the
world can be improved with the knowledge gained from these
experiments. A fundamental requirement for the realization of
such experiments is the capability to continuously pool data
from various manufacturing processes, potentially originating
from different companies with widely varying implementations
and protocols. Therefore, in a WWL and thus in an IoP, the
need for an holistic data interoperability layer exists.

Such a layer connects the major domains of a producing
company (i.e., product development, production technology,
production planning). Thus, enabling cross-domain collabora-
tion by providing (semantically) adequate and context-aware
data from production, development and usage, even in real-
time and across organizational boundaries, ultimately shapingAuthor manuscript.
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an interconnected production industry. An interoperability
layer across vendor specific solutions is a key building block
towards overcoming one of the most important barriers to the
establishment of advanced IoT approaches [13]. In this paper,
we formalize the data layer model FactDAG as a groundwork
for data interoperability in an IoP.

The remainder of this paper is structured as follows. In
Section II, we analyze the state of data interoperability based
on related work and three distinctive real-world use cases. Af-
terward, in Section III, we identify ten related key issues before
deriving a set of five requirements for data interoperability in
an IoP. We propose to address them by creating FactDAG, a
data layer model, for maintaining a directed acyclic graph of
immutable Facts, persistently identified using FactIDs. Further,
in Section IV, we highlight the respective benefits and then,
we conclude in Section V.

II. THE STATE OF DATA INTEROPERABILITY

To give an overview about current advances towards data
interoperability, we present recent approaches and data models.
Afterward, we analyze three typical use cases to understand
their perspective wrt. their data needs. As a foundation, we
summarize these findings to define a mutual perspective of
data interoperability and derive respective existing key issues
in a structured form.

A. Existing Approaches Towards Data Interoperability

Well-established technologies, such as Cloud Computing [14]
and IoT [15], were introduced into production systems during
the last years. In this process, collaboration between production
engineers, computer scientists and technicians from related
fields have grown increasingly closer, driving the need for cross-
domain data and system interoperability. Existing approaches
strive to enable interoperability between IoT protocols and
platforms as well as in development toolchains used to design
and execute manufacturing processes. In recent years, multiple
architectures, frameworks, and layers for interoperability,
including semantic approaches, were introduced [16]–[20].
Notable examples include OMG Data Distribution Service
(DDS) [21], MTConnect [22], OPC Unified Architecture (OPC-
UA) [23], the BIG IoT Platform [16] and the Industrial Data
Space (IDS) initiative [24]. Typically covered functionalities
include authentication, registration and discovery, as well as
accounting of and access to resources across IoT platforms.

Another perspective describes the usage of behavior- and
domain-driven development in a framework, which implicitly
outputs a domain model that serves as a foundation for semantic
interoperability [19]. While Nilsson et al. [20] give an overview
of semantic driven approaches, Gürdür et al. [25] examine
interoperability regarding toolchains for measurement systems.
They conclude that introduced interoperability assessment
models focus on different aspects regarding interoperability
and due to a lack of comprehensiveness, these models are not
used in industrial contexts.

While all approaches provide important input for (data) inter-
operability in the IoT, the complex multi-party and multi-step
collaboration scenarios of the manufacturing environment can

still not be modeled with sufficient clarity for collaboration and
data reuse. Especially when data is shared across organizational-
or domain-boundaries, implicit context knowledge and data
provenance is regularly lost, reducing the interpretability of
data.

One explanation for the lack of data interoperability may
be that a dominant approach towards information processing
and exchange in CPPS is the classical extract, transform, load
(ETL) procedure, which was first described in 1977 [26] and
later popularized with the emergence of data warehousing
systems [27], that only focuses on unidirectional dataflows
from source to sink and typically does not regard the challenge
of interorganizational information exchange in any specific
way.

B. Interoperability Needs Arising from Case Studies

To motivate requirements for data interoperability, which
allow for an improved information exchange, we further
introduce three practical use cases in different production
scenarios – practically coinciding e.g., in the supply chain
of car manufacturing – which pose several challenges on data
interoperability.

1) Mass-Production Process Monitoring: Fine blanking is
an economical precision forming process to produce large
number of identical workpieces commonly employed in the
automotive industry [28]. Once set up correctly, the process
of fine blanking is a stable process that constantly produces
high quality workpieces [29]. Although the setup does not
change throughout the process, none of the produced work-
pieces are identical [30] due to environmental conditions,
tool wear, changing surface quality or inhomogenous material
properties [31]. As a result, to fully understand the extent of
important quality features and minimize the amount of rejected
workpieces, simply monitoring the fine blanking process itself
is insufficient, instead information of the used material acquired
by its manufacturer have to be taken into account. With the
availability of data given by the material manufacturer, the
objective of a flexible process setup based on the specific
material properties can be addressed. Taking the adaptivity of
the process into account, an automatic adoption of the process
accounting can react on changes in material properties or
lubrication behaviour with the help of data-driven models [32].
However, as models giving recommendations for actions may
cause damage to the machine tools or other equipment, the
integrity and accountability of the underlying data gains more
importance, especially due to the associated questions of
liability for erroneous data. The development of models as well
as their constant improvements in the sense of an WWL rely on
the availability and traceability of data throughout the variable
process chain, which requires systems to be interoperable at
all times.

2) Process Optimization and Prediction: Due to the high
variety of machine tools, materials and final workpiece re-
quirements, choosing the right process parameters for fast and
reliable processes is difficult. Today’s machine tools have a
huge variety of integrated sensors, generating a continuous
stream of sensor data and process control data over time. By
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combining this data with knowledge from a company’s central
information repositories (e.g., ERP, MES or MRP systems)
deep real-time insights of the current process can be achieved.
For example, Königs et al. [33] developed a virtual workpiece
model that matches the real machining process. However, to
create, operate and validate these models, large amounts of data
from different sources, even interorganizational, are required.
To establish collaborations with the goal of utilizing process
data, new forms of interoperability have to be developed wrt.
controlled accessibility and data sovereignty. Furthermore, data
exchanges between the different systems and stakeholders must
be supported. Currently, most of the available information
is stored in proprietary systems, which require individual
interfaces to access data. The design of these proprietary
systems exacerbates the situation as contextual information
or even information about the source of the data can get lost.

3) Industrial Control of a Production Line: For example,
as part of his production line, a glass manufacturer has quality
issues because his product has high tolerances and due to
thermal processes, the output varies during the day. The robots,
which have to handle the glass, are not sufficiently able to
react to changes in the surface geometry of the product. To
tackle this challenge, a measurement system must be used to
identify surface deviations and provide this information to each
robot. All components of the production line are connected
in an IoP on different layers (Cloud, Edge, Shopfloor) to
support the information transfer which is ultimately collected
and processed to reconfigure the currently running process.
Production process information – such as the state of each
component (e.g., proximity sensor, pneumatic, robot, camera),
robot trajectories, etc. – has to be available, rapidly retrievable
by all devices and services at all times, and in a consistent
form, to establish a resilient process control [34].

For detecting process anomalies, as well as for establishing
new business strategies involving the car manufacturer or the
customer, production data must be made available through
a platform providing information about the product and the
production facilities, allowing to trace back data origins and
influences. This data sharing enables data usage for process
optimization and therefore, creates a feedback loop for the
running system. Besides, due to the possibility of providing
new services to customers, additional value is created for the car
manufacturer. To establish reliable data sources and to facilitate
accountability in such distributed collaboration scenarios,
principles must be implemented that provide information of
the data origin including an identifier, its authority, and the
origin of changes, enabling the interpretation of the context,
history, and reliability of used data. The high variety of tasks for
running a production line - such as scheduling, controlling the
process, providing product information and quality inspection -
rely on the same data, i.e., use and write that data. Therefore,
this data has to be made available in an interoperable manner.

C. Key Issues Motivating a Data Layer Model

The described use cases illustrate that interoperability
between different departments and production sites as well
as across company boundaries can increase productivity and

unlock previously unrealized value. The adoption of tighter
integrated production processes and data driven workflows
is however currently hindered by a number of fundamental
limitations. In the following, we identify ten key issues that
are present in today’s data layer models:

I1 Data Inaccessibility: Even though the presented use cases
express different general needs (e.g., context and provenance
information, data sovereignty, or accountability), all of them are
constrained by the current situation where data is not accessible,
only retained locally, or limited to a vendor-specific solution (cf.
Section I). Accessing information across system boundaries and
from different stakeholders is limited by incompatible interfaces
in industry and proprietary systems, largely embracing vendor
lock-in over interoperability. As such, data frequently resides
in isolated data silos, inaccessible from the outside and may
be considered as unrealized potential or hidden value [12].

I2 Lack of a Clear Data Authority: Currently, as illustrated
in Section II-A, most implemented interoperability layers have
a (limited) local view on the problem. As such, the authority
under which data was created (i.e., the liable and responsible
party) is often not explicitly recorded and subsequently unclear
when sharing data [35].

I3 Data Reliability and Dependability: Closely related
to origin of data is the question of data reliability and
dependability, both in terms of data, as well as service quality,
as unreliable sources can lead to severe disruptions and damages
in conjunction with tightly coupled processes [36], [37].

I4 Data Mutability and I5 Lack of Persistent Identifiers:
Additionally, data (e.g., sensor readings and database state) are
often mutable [38], [39] and thus can be overwritten by newer
versions of that data and subsequently cannot be reliably and
persistently referenced [40].

I6 Lack of Proper Data Versioning: Exasperating this point
is, that it is often unclear when new versions of a given data
point are available, which is the latest version or even which
of two versions is the more recent revision [41].

I7 Lack of Provenance Information: Directly related is the
frequent lack of information regarding data formation history,
origins and influences – its so-called provenance information
– often rendering it impossible to judge the quality, relevance
and applicability of information [42].

I8 Lack of Semantic Embedding: Another challenge is the
general loss of context information and embedding, i.e., the
relation between different data, their semantics and related
entities, that limit the interpretability and reusability of data and
can lead to significant damages in case of misinterpretation [42].

I9 Legal Insecurity: From the data consumer’s perspective,
a further key concern is that legislation and license restrictions
which apply are non-transparent, extending to questions of
ownership and liability, including for any derivative works and
the potential damages they incur [43].

I10 Lack of Control Over Data: Similarly, from the data
provider’s perspective, once data has been shared with another
party, control over it is typically lost [43].

Consequentially, existing concepts lack an adequate support
of data reuse (and sharing) due to the missing comprehensive-
ness, effectively limiting the advances in production technology
even though a sufficient number of IoT enabling approaches
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exists. For deployments in modern visions such as an IoP, which
proposes the creation of a WWL, a unified data layer model
shared across organizational entities could help in alleviating
current shortcomings.

III. INTERORGANIZATIONAL DATA INTEROPERABILITY

The presentation of the status quo shows that current
solutions are not yet able to meet all the identified desired
aspects of data interoperability and derived corresponding key
issues. Based on this list, we further derive a set of requirements
that we address by presenting a data layer model for future
data interoperability.

A. The Road Ahead

We are convinced, that a fundamental requirement for the
realization of an interconnected network of production systems
to create a WWL is the wide-spread (and preferably open)
availability of an abstract interaction, interoperability and data
exchange model, as well as a concrete interface implementation,
which ensures that data is uniform, aggregable and semantically
enriched while data access is properly permissioned and
audited.

Permitting access to, aggregating and combining production
data from different sources allows for individual data to be
reused in different contexts. Additionally, even new business
models can be created. For example, an analysis and generation
of prediction models (cf. Section II-B) could be offered solely
based on the accessible data. Similarly, an agile supply chain
management structure could be established. A significant
difference to today’s potential is the combination of different
data sources: Companies no longer only produce workpieces,
but also data, which leads to the concept of WWLs. Hence,
individual process data can be brought into different contexts
to generate added value.

A goal within an IoP is the processing of data across
locations and organizational boundaries [12]. Consequentially,
potentially sensitive data is being transferred away from the
owner’s jurisdiction over to potentially untrusted third parties.
Hence, an appropriate protection of sensitive information as
well as intellectual property within such a system is necessary
to meet any company’s need for data confidentiality. Otherwise,
any collaboration will likely fail due to conservative attitudes
regarding data sharing [12], [43].

B. Requirements for (Internet-scale) Interoperability

To address the identified issues, we extend upon the FAIR
data principles [44], as summarized in table I, and derive five
corresponding additional requirements which would enable
even sophisticated interoperability in the future (if properly
implemented and deployed).

Initially devised in the context of scientific data management
and stewardship to facilitate knowledge discovery by assisting
humans and machines in their discovery of, access to, integra-
tion and analysis of, task-appropriate scientific data and their
associated algorithms and workflows, the FAIR data principles
are a set of guiding principles to enable data interoperability.

TABLE I
A SUMMARY OF THE FAIR DATA PRINCIPLES AS SPECIFIED IN [44].

Findability
F1 (meta)data are assigned a glob-

ally unique and eternally persis-
tent identifier.

F2 data are described with rich meta-
data.

F3 (meta)data are registered or in-
dexed in a searchable resource.

F4 metadata specify the data identi-
fier.

Accessibility
A1 (meta)data are retrievable by their identi-

fier using a standardized communications
protocol.

A1.1 the protocol is open, free, and universally
implementable.

A1.2 the protocol allows for an authentication
and authorization procedure, where nec-
essary.

A2 metadata are accessible, even when the
data are no longer available.

Interoperability
I1 (meta)data use a formal, acces-

sible, shared, and broadly appli-
cable language for knowledge
representation.

I2 (meta)data use vocabularies that
follow FAIR principles.

I3 (meta)data include qualified ref-
erences to other (meta)data.

Reusability
R1 meta(data) have a plurality of accurate

and relevant attributes.
R1.1 (meta)data are released with a clear and

accessible data usage license.
R1.2 (meta)data are associated with their

provenance.
R1.3 (meta)data meet domain-relevant commu-

nity standards.

As such, they already cover a number of the identified issues.
Specifically, the directly addressed issues are I1 (principles
A1, A1.1, A1.2), I5 (principle F1), I7 (principle R1.2), I8
(principles I2, I3, R1, R1.3), and I9 (principle R1.1), as detailed
in [44].

To accommodate for the remaining challenges, we derive
the following corresponding data interoperability requirements:

RQ1 Data must be (a) immutable, (b) referenceable, and
(c) uniquely identifiable (Immutability, Referenceability,
Unique Identifiability) to address issues I4 and I5.

RQ2 Authoritative Source: Data must be clearly attributed to
a responsible authority. That authority is the singular
authoritative source of the data (the single source of truth)
and as such liable and responsible for the data. This
aspect addresses I2, as well as potentially I3, whenever
data reliability can be associated with the responsible
authority.

RQ3 Versioning: Data must be explicitly versioned, providing
a natural ordering of data revisions to address I6.

RQ4 Data Sovereignty: Data must be subject to definite legis-
lation and usage regulations to address I9 and I10.

RQ5 Stakeholder Confidentiality and Minimalism: Data access
should only be granted to the absolute minimum of
required information. Data sharing should occur in a
privacy-respecting manner while applying authenticated
encryption whenever reasonable. These requirements result
from the industrial context to limit the possibility for loss
of control over information to address I10 and align well
with the principle A1.2 of the FAIR data principles.

In the remainder of the paper, we will focus on the require-
ments RQ1 to RQ4 as they directly affect the way data is
accessed, exchanged, and handled. In contrast, requirementRQ5
mainly concerns the actual implementation of an interorganiza-
tional data layer model. Therefore, approaches must be in place
to make sure that information is properly secured (stakeholder
confidentiality). At the same time, the decision what scope
of information corresponds to the minimally required amount
of data (minimalism) can only be made domain-dependent,
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i.e., it is not part of the model itself either. Consequentially,
this requirement can only be addressed after the underlying
data interoperability model has been established. Thus, in
the following, we derive an actionable blueprint for data
interoperability in industrial scenarios.

C. From Data to Facts

In the following, we refer to data fulfilling requirements RQ1
and RQ2 – i.e., data that is immutable, referenceable, uniquely
identifiable, and attributed to an authoritative source – as
facts. Since facts (e.g., a distinctive physical sensor reading)
do not change, they can reliably be referenced and built
upon by multiple parties and can provide a cornerstone of
an interoperable distributed IoP. Regardless of the phrasing,
facts do not have to be true or valid in the real world (e.g.,
simulation results). Hence, this definition only applies to the
data itself without semantically checking the content.

In practice, however, data is rarely immutable. In fact,
most data changes over time due to various reasons and even
traditionally very static content, such as academic papers, are
regularly published in several different versions over time (e.g.,
[45]). As such, considering all data to be a series of data
revisions at different points in time, i.e., time series data,
is a more reasonable approach. An analysis of successful
existing collaborative, distributed information systems for tasks
such as distributed version control [46]), software package
management [47], [48] or research data management [49], [50],
reveals that creating immutable, referenceable and uniquely
identifiable data revisions (i.e., facts) is indeed a shared pattern
of these systems.

D. Lifting Data to Facts

Thus, to enable reliable collaboration, interoperability and
reuse in an IoP, we propose the following procedure to ‘lift’
any arbitrary data point to a fact:

1) Ensure the data has an (internal) unique identifier id, by
which it is (internally) retrievable.

2) Determine the fixed identifier auth of the authoritative
source of the data.

3) Convert the data to an immutable fact by using a suitable
revisioning system to assign each version of the data a
revision identifier rev.

By implementing this approach, we further address require-
ment RQ3 and can directly employ revision information in the
fact identifiers to improve the reliability of information.

E. FactID: Persistent Identification of Facts

The triple of authority ID, internal ID and revision ID
〈auth, id, rev〉 serves as a persistent identifier (PID) for an
immutable fact f〈auth,id,rev〉 and indefinitely references the
exact same data. As such, it will still be a valid persistent
identifier even if the identified fact is no longer available
or was actively deleted. We refer to this (unique) persistent
identifier of a fact as its FactID.

An authority (identified by 〈auth〉) can be responsible
for any number of data objects (identified through the pair

id: Internal Identifier

auth: Authority / Namespace

Schema / Semantics

Metadata (Time, Location, Author, Provenance, ...)

Data

rev: Revision (Time &/ Content-based)

Sync

⟨a
u
t
h
,
i
d
,
r
e
v
⟩:

Fa
ct

ID

Fig. 1. Basic layer model of facts as a triple of (i) authority, (ii) (meta) data, and
(iii) revision, enabling persistent referencing and master/slave synchronization
based on sequence of immutable data revisions, as well as provenance tracking
via references to source facts.

〈auth, id〉), which in turn can have any number of revisions
〈auth, id, rev〉. Due to their immutability, facts are perfectly
suitable for caching and archiving (e.g., using external data
archiving services).

In the simplest case, the revision identifier (〈rev〉) is the
timestamp when this revision of the data object was created,
but implementing other – e.g., content-based – identifiers such
as hashes etc., is acceptable, as long as a way to determine
the ‘most current’ of any two revisions of the same data
(as identified by the authority and internal data identifier)
exists. More formally, a given data object, identified by its
〈auth, id〉 identifier pair, and the set of all associated facts
(i.e., corresponding revisions) F〈auth,id〉, there must exist a
total order, i.e., a binary relation O on these revisions, such
that for all a, b, c ∈ F〈auth,id〉:

O(a, b) ∧ O(b, a) ⇒ a = b (antisymmetry)
O(a, b) ∧ O(b, c) ⇒ O(a, c) (transitivity)
O(a, b) ∨ O(b, a) ⇔ true (connexity)

Since revisions provide a natural ordering, determining the
availability of newer versions is trivial, as well as discovering
the latest revision of any given data point. As such master/slave
replication and synchronization systems can be built on top of
the revisioning primitive with minimal effort.

Finally, facts can be semantically enriched using domain-
specific data models and ontologies, where applicable, to
improve interoperability and machine interpretability, as well
as to enable the transfer of semantic context information. We
refer to such semantically enriched facts as semantic facts
(addressing I8).

As illustrated in Figure 1, this definition leads to a basic
layer model where a fact is an individual revision of data
(consisting of an identifier, the actual data and meta data and
optional schema and semantic information) under the domain
of an authority. Since the facts are directly associated with
corresponding PIDs, they can be referenced and resolved across
domains and authorities, linked, aggregated, and reused across
system and organizational boundaries.
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F. FactDAG: Tracking Fact Provenance over Time

Adopting the FAIR principle R1.2 and thus, addressing
issue I7, requires to register the PIDs of the source facts
in the provenance information whenever data is combined,
aggregated, or transformed. This tracking of facts’ provenance
information directly results in the creation of a directed acyclic
graph (DAG) of facts, or simply a FactDAG. Such a graph
of provenance information allows for better judgement of the
formation history, the credibility of facts, as well as supporting
to trace back origins of phenomena in data, similar to how
e.g., the Git commit history works [46].

Formally, a FactDAG employing only a single type of
influence edge to track provenance can be defined as a set of
facts F and corresponding directed influence edges I ⊂ F ×F ,
such that it is cycle-free, i.e., that there is no sequence of
directed influence edges (f1, f2), (f2, f3), ..., (fn, f1) ∈ I such
that whenever fact fi is in this sequence for all 1 ≤ i < n,
then there is an influence edge (fi, fi+1).

Together with information about the actor that inflicted a
change, as well as the processes involved, an audit log of all
relevant changes is constructed. A viable candidate for the
implementation of such a log is the established W3C standard
PROV [51]. Hereby, processes and actors may themselves
simply be facts, which are specifically referenced in the
provenance information of the derived fact.

To address the requirement RQ4, a suitable approach is to
rely on usage policy languages, such the SPECIAL Usage
Policy Language [52] or CPPL [53], which additionally allows
for the modeling and tracking of data usage and usage consent.
Implementations employing distributed ledgers, such as the
IOTA Tangle [54], for tamper resistance and decentralized
trust seem equally feasible. Regardless, of the particular
implementation, a single approach should be pursued to enable
interoperability on a large scale. Unfortunately, these aspects are
not legally binding yet and therefore, they mandate legislative
changes to force data processors to respect data sovereignty
wishes and to allow for fines in case of violations. The recent
introduction of the GDPR [55] shows that related legislative
approaches can be successful.

Furthermore, the issue I3 concerning data reliability can be
tackled through similar means. While attached meta information
can classify the quality of information, legislative boundaries
can make sure that only usable information is being shared
with collaborators [43]. For example, the expiration date of
products already forbids the sale of old physical goods to
protect consumers. Such an approach could be transferred to
the digital domain of production data as well to shield users
from inaccurate information. Furthermore, digital signatures
may be used to technically enforce an authorities’ responsibility
for their data and ensure its authenticity, as well as cryptography
to prevent unauthorized access [56]. However, since the
FactDAG model is a conceptual data layer model, transport
and other security concerns must be addressed by future
implementations or left to the transport layer. Consequentially,
our design of a formalized FactDAG model is functional wrt.
data interoperability regardless of any previously agreed upon,
individual security implementation.

IV. APPLICATION

The application of the basic layer model of facts sets a
standard in data provisioning whereas the FactDAG enables
the interorganizational exchange of provenance-linked facts,
and therefore the reliable and accountable adumbration of
manufacturing processes.

For production environments that actively apply data-driven
models to support the decision making and optimize machines
or material usage, a transparent and auditable decision making
is important. In this context, facts represent reliable data (even
when it originates from external sources) and the FactDAG
illustrates the flow of sensory information’s transformations up
to the point where the information is used for a decision.

In an automation process, facts describe control information,
e.g., the state of a machine or certain information about a
product while the FactDAG describes the interaction, alteration
and dependencies of these facts. As a result, analyzing a
FactDAG consisting of control information and commands,
enables the analysis of the dependencies in a flow of control
information over time.

A. Exposing Information as Facts

By representing different revisions of data as a series of
facts, collaborative interorganizational reuse of data can be
facilitated. To enable interoperability with existing information
systems, lifting data that stores information to facts can be
accomplished by employing gateway services, caching and
versioning existing resources on-the-fly using a mechanism
similar to the HTTP Memento protocol [57], [58]. Such an
approach could also enable the usage of third-party archiving
services and backwards compatibility with data sources not
explicitly implementing revisioning and the FactDAG model,
i.e., data can be transformed before being shared in an
interorganizational setting. Hence, no changes to today’s
deployed sensors and devices that record data are required
to support a sharing of facts.

B. Composing FactIDs from Existing Identifiers

In practice, the abstract notions of authority ID, internal
ID and revision ID must be implemented in terms of concrete
identifier systems, favorably compatible with existing infras-
tructure. As such, a conceivable practical implementation of a
FactID could reuse domain names [59] as authority ID, URI
paths [60] or other existing object identifiers as internal ID and
timestamps as revision ID. Hence, the introduction of FactIDs
does not have to go along with an introduction of new labeling
approaches.

An example of such a FactID could consist of the domain
name wzl.rwth.de, the path machineX/partY/sensorZ,
and the timestamp 2019/07/11 17:07:27, e.g., represented as
UNIX timestamp 1562857647. Thus, constructing the FactID
〈wzl.rwth.de, machineX/partY/sensorZ, 1562857647〉.
Subsequently, FactIDs can be created in a way that they are
compatible with existing production systems deployments and
information systems, while they are reusing existing and easily
(human-)interpretable identifiers.
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Fig. 2. An exemplary business process over time involving three Companies A, B, and C, collaborating in a WWL (illustrated on the left), and a corresponding
FactDAG (visualized on the right) that highlights the evolution of data and process revisions as well as their influences. Each information is uniquely identified
by its corresponding FactID. These facts can in turn also be utilized further (dashed arrows).

C. Tracking Dataflows in the FactDAG

By incorporating facts representing the activities or processes
leading to data changes into the FactDAG, it is possible to
track and capture the physical and logical dataflows in the
FactDAG.

In Figure 2, we illustrate how a FactDAG and dataflows relate
in an exemplary business process. In the presented scenario,
company 〈A〉 continuously designs, evaluates, and models
〈A, model〉 production processes, deriving an optimized
process model 〈A, pM〉 from (both internally and externally
acquired) evaluation data 〈A, evA〉, 〈A, evB〉 and 〈C, evA〉.
Under its authority, the initial revision of the model 〈A, pM, 1〉
is derived exclusively from fact 〈A, evA, 1〉, but subsequently
incrementally updated by also including 〈A, evB, 1〉 as that fact
becomes available, resulting in 〈A, pM, 2〉. Later a new revision
〈A, evA, 2〉 of 〈A, evA〉 is created and additional evaluation data
〈C, evA〉 is externally acquired from company 〈C〉. Finally, a
new model revision 〈A, pM, 3〉 is derived from scratch, solely
based on facts 〈A, evA, 2〉, 〈A, evB, 1〉, and 〈C, evA, 1〉. All
revisions of model 〈A, pM〉 are derived using the initial revision
of process 〈A, model, 1〉 .

Additionally, company 〈B〉 produces 〈B, produce〉 goods
using (the initial revision of) company 〈A〉’s process model
〈A, pM, 1〉, simultaneously producing process data 〈B, pdA〉 and
〈B, pdB〉. Company 〈B〉 further provides process data from
similar related processes 〈B, pdC〉. Under its authority, three
revisions of process data 〈B, pdA〉 and two revisions of process
data 〈B, pdB〉 are derived employing process 〈B, produce, 1〉
, as well as an additional data point 〈B, pdC〉 without explicit
information of the involved processes.

Company 〈C〉 is a service provider that aggregates
〈C, aggregate〉 process data from various sources (here:
〈B, pdB〉 and 〈B, pdC〉 from company 〈B〉) and derives addi-
tional evaluation data 〈C, evA〉 that it sells to its customers.
Hereby, company 〈C〉 explicitly makes use of the possibility
to interpret multiple revisions of 〈B, pdB〉 as a time series of
data through unique FactIDs.

Overall, our exemplary presentation only provides a partial
view on all (global) dependencies. To indicate further dataflows,
we include additional exemplary dashed gray arrows in Figure 2.

While the real-world business process includes dataflow cycles
(i.e., data flowing back to a data source, tightly incorporated
into the business process), the FactDAG remains cycle-free with
edges only pointing in one direction along the time-axis. As
such, the integrity of references, provenance information and
attributions remains intact over time while cyclic dataflows can
be modeled more reliably than using traditional ETL pipelines,
i.e., satisfying the needs of data interoperability in an Internet
of Production.

D. FactDAG Applications in Manufacturing

To illustrate the advantages of a FactDAG (as sketched in Sec-
tion III-F), we map the abstract schema to a concrete application
based on real-world companies in different exemplary use cases.
Suppose that we operate in a scenario with a steel manufacturer
〈Arcalor〉, a manufacturer of components 〈Busch〉, and an
automotive company using these components in an automated
assembly line 〈CMW〉. Manufacturer 〈Arcalor〉 produces blocks
of steel with a certain tolerance regarding its quality features.
During the manufacturing process, the manufacturer gathers sen-
sor data, e.g., rolling forces 〈Arcalor, roll/F〉, temperature
gradients 〈Arcalor, roll/dTemp〉, or acoustic emissions. The
manufacturer also employs physical models and simulations
〈Arcalor, roll/model〉 that describe the behaviour of the
material during the manufacturing processes. After a block
of steel has been produced, all gathered data is used to
predict certain hardness conditions of the material at different
positions, i.e., 〈Arcalor, workpiece/99/hardness, 1〉 for
the workpiece with internal work order number 99 and revision
ID 1.

Component manufacturer 〈Busch〉, who processes that
block of steel for the manufacturing of a component
〈Busch, component/42〉, can then utilize the information
〈Arcalor, workpiece/99/hardness, 1〉 provided by the
material manufacturer 〈Arcalor〉 to adapt its process to
each specific workpiece by adjusting the process forces or
the path taken during, e.g., a milling process, to prevent,
e.g., tool deflection (cf. Section II-B2). At the same time,
during the milling process, the manufacturer gathers geo-
metric properties 〈Busch, component/42/geometry, 1〉 of
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the workpiece as well as other relevant process parameters
〈Busch, component/42/parameters, 1〉.

Company 〈CMW〉 uses that data to automatically adjust its
adaptive assembly line to the workpiece dimensions and re-
quirements. Here, sensor systems acquire data that is processed
to control movements or operations of robots to assemble
different components together.

Suppose company 〈CMW〉 now detects, that component
〈Busch, component/42〉 fails to pass internal quality control.
In order to determine all processes and parties involved in the
creation of the component, the recorded provenance directly
allows backtracing all potentially relevant influences across or-
ganizational boundaries as the closure over the influence edges
that lead to the component’s creation. This formation history of
the flawed component may further be directly compared to the
formation history of similar, e.g., unflawed workpieces in order
to detect deviations which may indicate a potential source of
error. Suppose that a specific revision X of the temperature
gradients 〈Arcalor, roll/dTemp〉 describing the steel which
was used to manufacture component 〈Busch, component/42〉
reveals, that the steel used to create the faulty component
was quenched abnormally fast, resulting in different ma-
terial characteristics just within the tolerance specified by
component manufacturer 〈Busch〉 but insufficient for the
intended application at company 〈CMW〉. Subsequently 〈CMW〉
may e.g., either (directly or indirectly through 〈Busch〉) provide
additional manufacturing parameters 〈CMW, requirements〉 to
〈Arcalor〉 or automatically adapt its internal assembly process
to incorporate additional preprocessing and preparation steps
to ensure the required quality parameters.

As such, process data in the FactDAG provide valuable
context information and provenance for customers and pro-
ducers alike, by providing a conceptual foundation for the bi-
directional information flow between suppliers and customers
across interorganizational boundaries. The establishment of
cyclic information flow is also a key enabler for agile
manufacturing [61], i.e., the iterative product evaluation and
improvement within the user cycle and based on usage data
(cf. Section II-B1).

Without a structured and context-aware representation of
information, such improvements are unlikely to be realized [7],
especially when interorganizational collaboration is not already
deeply integrated into the business process [8].

The above example illustrates advantages for automated
assembly lines, fine blanking lines as well as machine tool
optimizations in general given an implemented FactDAG for
data interoperability. Every manufacturer of a semi-finished
product can evaluate the performance of its product by access-
ing upstream information connected to its product, whereas
the user of the semi-finished product may adjust its process
precisely to the individual properties of the delivered product.
Thus, if each company would share their information, every
manufacturing process could be integrated into the concept
of a WWL that would significantly increase the amount of
available data and the opportunities for data-driven modeling
of manufacturing systems. Additionally, such a system allows
tracking audits of the origin, history of origin and version
of each data used and generated in any system to ensure

liability and trust in the data resulting from uncertainties due
to interorganizational collaborations.

V. CONCLUSION

In the future, production will strongly rely on digital data
as nowadays already exhibited by the Internet of Things.
Hence, for each physical workpiece, a manufacturer will
also provide a digital manifest. By establishing a Worldwide
Lab, an Internet of Production enables (cross-domain) col-
laboration between different departments, production sites, or
even between companies to improve their well-established
processes. However, existing approaches fail to support data
interoperability which would facilitate additional improvements
of production processes. By describing different industrial use
cases, we discussed the high variability of process data and
derived the need for data interoperability. Overall, we identified
ten key issues with today’s data layer models.

We hypothesized that existing interoperability systems fun-
damentally suffer from mutability of data and the lack of clear
data authorities. Hence, we derived a set of five requirements
for (Internet-scale) data interoperability, extending the well-
known FAIR data principles. Subsequently, we introduced a
data interoperability model design, addressing the identified key
issues. The deep incorporation of provenance information into
this model enables companies to rely on persistent identifiability,
synchronization, data sovereignty, and accountability, even
in interorganizational scenarios. We refer to this model as
FactDAG. To illustrate the impact of our presented approach,
we highlighted (immediate) advantages of its implementation
in a Worldwide Lab.

In sight of large prospective advantages of the proposed
approach for an Internet of Production, future work will focus
on the design of a concrete implementation of the model,
carefully considering the requirements and circumstances of the
abundance of different existing production systems, communica-
tion protocols, interaction patterns and data formats encountered
in production environments, as well as the evaluation of its
practical effectiveness. As such, the FactDAG model serves
as ground work for other applications in production systems
and therefore will be used as an enabler for the concepts to
make data findable, accessible, interoperable and reusable in
an Internet of Production.
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[16] A. Bröring, S. Schmid, C.-K. Schindhelm, A. Khelil, S. Kabisch,
D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic, and E. Teniente López,
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