
Towards Secure and Decentralized
Sharing of IoT Data

Hien Thi Thu Truong, Miguel Almeida, Ghassan Karame, Claudio Soriente
NEC Laboratories Europe, Germany

hien.truong@neclab.eu, miguel.almeida@neclab.eu, ghassan.karame@neclab.eu, claudio.soriente@emea.nec.com

Abstract—The Internet of Things (IoT) bears unprecedented
security and scalability challenges due to the magnitude of data
produced and exchanged by IoT devices and platforms. Some
of those challenges are currently being addressed by coupling
IoT applications with blockchains. However, current blockchain-
backed IoT systems simply use the blockchain to store access
control policies, thereby underutilizing the power of blockchain
technology. In this paper, we propose a new framework named
Sash that couples IoT platforms with blockchain that provides
a number of advantages compared to state of the art. In
Sash, the blockchain is used to store access control policies
and take access control decisions. Therefore, both changes to
policies and access requests are correctly enforced and publicly
auditable. Further, we devise a “data marketplace” by leveraging
the ability of blockchains to handle financial transaction and
providing “by design” remuneration to data producers. Finally,
we exploit a special flavor of identity-based encryption to cater
for cryptography-enforced access control while minimizing the
overhead to distribute decryption keys. We prototype Sash
by using the FIWARE open source IoT platform and the
Hyperledger Fabric framework as the blockchain back-end. We
also evaluate the performance of our prototype and show that it
incurs tolerable overhead in realistic deployment settings.

Index Terms—blockchain, hyperledger, data sharing, data
marketplace, access control, IoT, security, policy

I. INTRODUCTION

The Internet of Things (IoT) has been envisioned as a
large distributed system of devices equipped with sensors and
actuators. IoT devices are expected to create and exchange
vast amounts of data, thereby bringing forth unprecedented
challenges in terms of security and scalability. In such partic-
ular settings, available solutions for secure data sharing fall
short owing to the magnitude of data produced, heterogeneity
of devices, lack of trust among parties, and transparency on
data handling.

In many distributed applications where trust and trans-
parency are critical factors, the blockchain technology has
shown to be a promising solution. It is not surprising, there-
fore, that both industry and research community are heavily
discussing on how to efficiently combine IoT platforms with
blockchains. For example, a number of industrial players are
developing blockchains tailored to IoT use cases (e.g. IOTA1,
IoTeX2, Atonomi3). Similarly, a number research proposals
suggest to solve the problem of secure data sharing in IoT

1https://www.iota.org/
2https://iotex.io/
3https://atonomi.io

platforms by directly connecting them to a blockchain plat-
form [5], [9], [10], [18]. The majority of these proposals
follow a hybrid approach where a storage system (e.g., a cloud
provider) hosts the data itself and a companion blockchain
offers services to ensure, e.g., trust distribution and integrity.
For example, [17] propose to store access control policies that
are queried by the storage provider whenever it receives an
access request. As such, the storage provider acts as a policy
decision and enforcement point; and the blockchain ensures
policy integrity and allows a public auditing of the changes
made to a policy. Other proposals [7], [8] assume data to be
encrypted before being stored at the cloud, and introduce an
additional key-authority to regulate access to keys needed to
decrypt data. In such a scenario, the damages of a malicious
storage provider are mitigated as it only handles ciphertexts.
Distribution of the key authority [20] further avoids single
point of failure for handling decryption keys.

Nevertheless, existing proposals are not fully solving scal-
ability for access control problems taking account the vast
number of IoT stakeholders and potential sharing transactions
among them. They propose to port access policies to the
blockchain, which make trust distributed, but still they require
owners to handle policy updates. This mechanism does not
scale to the size of IoT systems. We argue that blockchain
can enable this policy management to be more scalable by
shifting policy update operations to the blockchain back-end
via implementation of smart contracts. By doing so, we are
taking full advantage of blockchain technology for IoT. On the
one hand, blockchains rely on consensus engine to maintain
the integrity of a ledger and to audit its changes—so it can be
used to hold the “true” access control policy for a piece of data.
On the other hand, blockchains are also an effective means to
(1) ease the setup of communication channels between parties,
(2) monetize transactions and information exchange, and (3)
perform general computation by means of smart contracts.

We therefore propose a novel blockchain-enhanced IoT
data-sharing framework named Sash that takes full advan-
tage of the provisions offered by the blockchain. We follow
the established paradigm of storing data offchain—given the
amount of data in IoT applications, no other option seems
viable. However, we shift more operations to the blockchain
back-end thereby exploiting its natural resilience to mali-
cious behavior of its members. We instantiate our proposed
framework with a number of tools borrowed from system
security and applied cryptography, leading to solutions with

Proceedings of the 2nd IEEE International Conference on Blockchain, Atlanta, USA, 2019

ar
X

iv
:1

90
8.

09
01

5v
1

 [
cs

.D
C

]
 2

3
A

ug
 2

01
9

different level of trust in the off-chain components. In our
basic instantiation, we place the policy decision point (PDP)
in the blockchain by leveraging smart contracts. A dedicated
contract handles access control policies and evaluates access
requests. Data owners may set a price to access their data and
access decisions take into account whether the data consumer
is willing to pay that price. As such, (1) policies are correctly
and fairly evaluated, (2) granting access decisions can be
audited, and (3) compensation to data producer is offered “by
design”. The cloud storage, therefore, merely acts as a policy
enforcement point (PEP).

In our extended instantiation, we refine the trust asumption
on the cloud storage and assume data is encrypted by data
owners before being stored in the cloud. In particular, we
use prefix encryption [3] to distribute decryption keys. Prefix
encryption is a special flavor of Hierarchical Identity-Based
Encryption (HIBE) [2] and it is particularly suited for appli-
cations where data is arranged in a hierarchy. As such, prefix
encryption allows fine-grained access control and minimizes
the overhead required to issue/obtain decryption keys. The key
distribution authority may be run by the owner of the sensors,
by a trusted authority, or even distributed across several parties
to avoid a single point of failure.

We prototype Sash using FIWARE as the IoT platform
and the Hyperledger Fabric as the blockchain back-end. The
essential parts of Sash are two new handlers Blockchain
Handler and IoT Domain Router. The two handlers are
responsible for translating and forwarding queries/messages
between different components of the IoT system and the
blockchain network.

We further evaluate the performance of Sash. The ex-
perimental results shows that committing and fetching data
increases in a quasi linear fraction to the growth of data size.
This shows that the overhead incurred by our instantiations
can be well tolerated given reasonable data sizes.

II. BACKGROUND

A. Blockchain and Smart Contracts

Blockchain is an implementation of distributed ledger tech-
nology. Every transaction is recorded in the ledger in order of
occurrence. In blockchain, a group of transactions is recorded
in a block. Blocks are chained by including cryptographic hash
value of previous block into the newly created next block.
This technique of chaining with linked hash values prevents
tampering transactions without being detected.

Smart contracts are computer programs (code) that handle
the business logic which was pre-agreed by the network
members. They run on the blockchain and provide an interface
to interact with the data. This code is available to all the mem-
bers present on the network (i.e. orderers, peers). Blockchain
members add smart contracts to the blockchain in similar way
of adding transactions, thus these smart contracts are included
in blocks. Transactions that update smart contract states are
also recorded in the next block created after the changed had
been made. This mechanism makes smart contracts immutable
in the same manner for transactions.

Smart contracts are typically enforced by the nodes of the
system, therefore is not possible for a single entity to bypass
the rules defined within this code, since it would require
the agreement of the majority of the participants. The main
advantage of smart contracts is that they can automate an
organization’s business logic. In turn, the switch to automation
cancels the effects of human errors and misunderstandings
that may lead to legal disputes. A legal contract or a law
might be subject to personal interpretations, but software is
deterministic; there is no room for subjective interpretations.

B. Prefix Encryption

Identity Based Encryption is a cryptographic primitive that
solves the problem of authenticity of public keys by replacing
the latter with “identities”. An identity may be an arbi-
trary string, e.g., an email address like jdoe@email.com.
A trusted key-distribution authority provides eligible parties
with the secret decryption keys—for example the owner of
jdoe@email.com may be granted the corresponding secret
decryption key. As a result, one can encrypt data under an ar-
bitrary identity. Assuming a trusted key-distribution authority,
none but the party associated to that identity can decrypt the
ciphertext and recover the original data.

Prefix encryption [3] is a special flavor of IBE where
decryption keys for a given identity ID, allow to decrypt
any ciphertext encrypted under identity ID′, if ID is a prefix
of ID′. (Note that any string can be seen as the prefix of
itself.). Just like an IBE scheme, a prefix encryption scheme
is composed of the following algorithms.
• (mpk,msk) ← Setup(1λ). The setup algorithm takes

the security parameter λ and outputs a master public key
mpk and a master secret key msk.

• skID ← Extract(msk, ID). The key extraction algo-
rithm takes the master secret key msk and an identity
ID and outputs a secret decryption key skID.

• c ← Encrypt(mpk, ID,m). The encryption algorithm
takes the master public key mpk an identity ID and a
message m; it outputs a ciphertext c.

• (m,⊥) ← Decrypt(skID, c). The decryption algorithm
takes as input a secret key skID and a ciphertext and
outputs either a message m or a special symbol ⊥.

The correctness requirement states that for any message m,
identity ID and keys (mpk,msk) ← Setup(1λ), if skID ←
Extract(msk, ID), c← Encrypt(mpk, ID′,m), and ID is
a prefix of ID′, thenm← Decrypt(skID, c).

The security requirement (IND-ID-CCA) ensures that an
adversary cannot gain any information from a ciphertext
encrypted under an adversary-chosen identity ID, as long as
the adversary has access to any decryption key but the ones
associated to any identity ID′ such that ID′ is a prefix of ID.

III. SECURE AND DECENTRALIZED IOT DATA SHARING

A. Problem Statement

In this paper, we tackle the design of a secure data-sharing
platform for IoT applications. Current IoT platforms place
great trust in a single entity (e.g., the IoT broker) who

stores all the data, handles all access policies, and takes all
access control decisions. Few solutions have addressed trust
distribution among IoT entities by shifting access control
policies to a blockchain back-end. Even so, it still requires
every single data owner to perform operations on updating
policies, thus making it not scalable to increasingly growth of
IoT systems.

Our overall goal is to decentralize the functionality of a
single party in order to guarantee that access policies are
correctly managed and evaluated against access requests. We
also want to allow auditability of policy updates, as well as
access requests and decision. Further, we want to mitigate
damages due to data leaks. Finally, we seek for a design where
data producers obtain remuneration for sharing their data.

B. System and Threat Model

We consider a blockchain comprising of data owners (pro-
ducers) and data consumers. Data owners primarily store their
data on a dedicated remote data storage (e.g., Amazon S3)
that is able to harness and process larger amounts of data.
Data consumers are interested in accessing data produced by
owners. Over blockchains, all members can be either a data
consumer, or a data producer, or both.

We assume that data owners control—and rightfully so—
are expecting compensation for sharing their data. As such,
we assume data to have a “price” set by the owner that should
be paid by a consumer upon getting access to the data. Both
owners and consumers hold unique membership identities
over the blockchain network. Identity establishment relies on
existing identity manager that often be a part of the blockchain
implementation. The identity manager generates and manages
identities, keys (public and private), and addresses for all nodes
in the network.

In our threat model, we assume data producer and data
consumer do not trust each other, however, both of them trust
the blockchain network. As by design, blockchain ensures
verifiability and immutability, hence its users utilize these
features for security. Before sharing data with a consumer,
the data producer and the consumer establish a “payment”
transaction given a data offer created previously by the owner.
The payment is recorded and verifiable over the blockchain.

We also assume an active attacker who wants to alter ACLs
to get unauthorized access to the data. Note that ACLs is
updated according to payment transaction results, thus this
attacker needs to control more than a half of voting power
of the blockchain network.

IV. OUR PROPOSAL FRAMEWORK: SASH

A. Overview

We start by giving an overview of Sash. In Sash, we store
IoT data off-chain but offload to the blockchain the access
control functionality—currently handled by a centralized en-
tity such as the IoT broker.

In particular, a smart contract handles access control policies
and evaluates access requests. Data owners push their data to
the off-chain storage and advertise it to the smart contract

through an “offer”. The latter may define the price to be
paid in order to gain access to the data. Similarly, access
requests from consumers are issued to the smart contract that
evaluates the request against the policy and makes an access
decision. The smart contract also bookkeeps trade information
between owners and consumers via IOU4 accounts. As such,
our platform creates a “data marketplace” where owners sell
and consumers buy data.

As we handle access control in the blockchain, we ensure
that access policies are correctly managed and access requests
are duly evaluated. We also ensure remuneration of data
owners and auditability of all operations.

Since data is actually stored off-chain, the storage provider
is also a blockchain node executing the smart contract.
Once an access decision is made, the storage provider acts
accordingly—allowing or denying access to the data—thereby
performing as the policy enforcement point.

Up to this point, our solution overview assumes a trusted
storage provider. Nevertheless, a malicious storage provider
may abuse its functionality as policy enforcement point and,
e.g, share data with unauthorized parties. We address this issue
in our extended design where 1) data is encrypted before
uploading it to the storage provider, and 2) key distribution to
authorized parties is handled by a cohort of key authorities. As
a result, the storage provider only handle ciphertexts and unau-
thorized access requires compromise of all the parties acting
as key authorities. Given the application scenario where data
(and sensors) is usually organized in a hierarchical fashion,
we identify prefix encryption as a suitable encryption scheme
that allows fine-grained access control while minimizing key
requests to the (distributed) authority.

B. Data Marketplace

The data marketplace in Sash allows data producers and
consumers to trade data through the blockchain. Here, we
design basic trading functions over the marketplace: veri-
fyMetaData(), addMetaData(), createOffer() and acceptOf-
fer(). Data structures of the various entities are shown in
Listing 1. In the following we will present details of data
marketplace functions.

Listing 1: Data Structure
Struct User Struct MetaData

ID: string ID: string
Pk: []byte fileID: []byte

owner: []byte
URI: []string
ACL:[][]byte

Struct Offer Struct IOU
ID: string ID: string
mdata: *MetaData User1: string
value: float User2: string
state: bool value: float

1) Data structure: Each MetaData item has unique
fileID, owner information, storage location and white-list type

4IOU is abbreviated from the phrase ”I owe you”. It usually specifies a
debtor, the amount owed, and might be also creditor

ACL (Listing 1). Initially, the ACL only contains the owner.
Owners can share their data by creating an offer that sets
the price to get access to the data. Data offers contain a
reference to the data being sold and these offers are available
for trading only when their state is “true” (active). Available
offers are visible on the blockchain so that consumers can
query and find the data that fits their interests. To handle
payments, an IOU account is created for each pair of seller
(who created data offer) and buyer (who accepts offer and
pays for getting access). IOU accounts are updated to reflect
results of transactions between the trading parties. IOUs can be
settled off-chain using standard payment methods. How these
IOUs can be used and converted to other currencies depends
on specific implementation of the blockchain and it is out of
our scope.

Listing 2: Data verification function
Function verifyData(user, mdata, cloud)

foreach file in mdata do
if !cloud.exists(file.URI) or

cloud.getID(file.URI) != file.ID or
cloud.getACL(file.URI) != file.ACL or
cloud.getOwner(file.URI) != file.owner

then
return false

end if
end for
return true

end function

2) Verify meta data: Listing 2 describes the function to
verify meta data. It checks the match of metadata between a
given data and respective details of the same data stored at the
cloud. This verification does not check quality of data content.

3) Add meta data to the blockchain: The blockchain net-
work allows its nodes to add meta data that they want to share.
It stores this data in a key-value store database. To add meta
data, it first verifies the meta data. Next it adds the data owner
to the ACL (see Listing 3).

Listing 3: Data adding function
Function addData(user, mdata, cloud)

if !verifyData(user, mdata, cloud) then
return error

end if
if map.Contains(mdata.fileID) then

return error
end if
data.ACL = {mdata.owner}
key = "data" || mdata.fileID
map.Set(key, mdata)
return success

end function

4) Create data offer: To share data with an interested
consumer, the data owner needs to create an offer for that data
and let the network advertise this offer to potential consumers.
The value field represents the price that the data can be traded
for. Listing 4 contains steps in a smart contract to allow a node
adding an offer to the blockchain. Before an offer for a data
is added to the blockchain, the function data verification is
called to check for data validity. Once the verification passed,

the offer is added to the blockchain and its state is set “active”
making the offer available for trading. Data offers can be
revoked (or canceled) by setting their state values to false. To
put focus on its functionality, we consider simple offers with
few basic data fields, however, in practice, the offer might
have more fields such as the validity period and accomodate
composite sharing conditions.

Listing 4: Offer creating function
Function createOffer(user, offer, cloud)

if !verifyData(user, offer.mdata, cloud) then
return error

end if
offer.state = true
key = "offer"||offer.mdata.fileID
map.Set(key, offer)
return success

end function

5) Accept data offer: Data consumers can browse all
available offers by querying the blockchain. Once a data
item of interest is found, the consumer can accept the offer,
make the payment and download the data. Listing 5 describes
the corresponding function. When the consumer accepts the
data offer by the owner, the owner-consumer IOU account is
updated.

Listing 5: Offer accepting function
Function acceptOffer(user, offer, cloud)

if !offer.state then
return error

end if
if !verifyData(offer.mdata.owner, offer.mdata,

cloud) then
return error

end if
offer.state = false
key = offer.ID
map.Set(key, offer)
if user.ID > offer.mdata.owner then

key = "IOU"||hash(user.ID, offer.mdata.owner)
cvalue = getCurrentIOTValue(key)
value = cvalue + offer.value

else
key = "IOU"||hash(user.ID, offer.mdata.owner)
cvalue = getCurrentIOTValue(key)
value = cvalue - offer.value

end if
map.Set(key, append(offer.mdata.ACL, user.ID))
return success

end function

C. Data Sharing Schemes

Our description thus far covers data trading operations. In
the following we describe how data is actually shared, i.e.,
how consumers get access to data they have requested. We
design two schemes based on Access Control Lists (ACLs)
and on prefix encryption, respectively

1) ACLs based scheme: An Access Control List (ACL)
is a list of permissions to manage who can access a data
resource. A data owner stores its data in the clear at the
cloud storage that holds the latest version of the ACL—since
the storage provider is also a node of the blockchain—and

Data Producer

2. Put data offer
for item d to Blockchain,

price, ACL

3. Accept the offer
on item d and

pay for it

5. Receive payment

6. Sync ACL

7. Get data item d
from the cloud

Cloud Storage Blockchain

4. Update ACL

Data Consumer

1. Put data item
d to the cloud

Fig. 1: Data sharing scheme based on ACL.

Data Producer

2. Put data offer for item d
to blockchain, price

3. Accept the offer
on item d and

pay for it

4. Receive payment

5. Request decrypt
key k for enc(d) from cloud

6. Get enc(d)
from the cloud

Cloud Storage Blockchain Data Consumer

1. Put encrypted
data enc(d)

to cloud

Key Authority

7. Get
decryption

key k

Fig. 2: Data sharing scheme based on prefix encryption.

enforces access control decisions. Fig.1 depicts the sharing
steps where producer and consumer advertise and accept data
offers. The data offer is described in a smart contract and
the corresponding ACL is updated by adding the identity of
the consumer once its access request has been accepted. Note
that ACL updates are done over the blockchain (by executing
the martketplace smart contract) and do not require operations
from data owners.

Enforcement via ACLs provides a straightforward means to
regulate access to data. Nevertheless, this scheme assumes a
trusted storage provider that does not abuse its role as a policy
enforcement point to, e.g., leak data to unauthorized parties.

2) Prefix encryption based scheme: We now introduce a
scheme where access control is cryptographically enforced
so that we can refine the trust assumption on the storage
provider. In particular we assume data is encrypted by owners
before it is uploaded to the storage provider and we use
the blockchain-managed ACL to reflect parties authorized to
access the corresponding decryption keys. Fig.2 provides an
overview of this design. Here the cloud is detached from the
blockchain network.

We use prefix encryption as it is particularly suited for
IoT scenarios where a multitude of devices are organized
in a hierarchy. For example, Alice may organize her IoT

devices in an hierarchical namespace alice/, including
alice/house/ for devices installed at her house and
alice/car/ for devices installed in her car. Alice can thus
create her own master key-pair (i.e., by running Setup(1λ))
and load the master public key on her devices. Each de-
vice produces data encrypted under its own “prefix”. For
example, the smart thermostat may encrypt its measurement
m via Encrypt(mpk,alice/home/thermostat,m) and
upload the ciphertext to the platform. Envelope encryption may
be used to encrypt bulk data.

Distribution of secret keys to eligible parties can happen
in a number of ways. Alice may setup her own service or,
alternatively, delegate this role to either a single or a distributed
authority. The party taking up such a role must hold the master
secret key msk created by Alice at Setup time5 and must
synchronize with the blockchain to get the up-to-date ACL for
a given prefix and distribute decryption keys accordingly. The
key authority receives a request to access a given prefix, e.g.,
alice/home/thermostat) and uses the ACL to decide
whether to grant or deny the request. If the request is granted,
the authority runs Extract to compute the secret decryption
key and securely transfer that key to the requestor. Note that
requests carry the public key of the requestor so that the
authority can securely transfer keys to the intended party.

Once a party obtains a decryption key associated to a
given prefix it can ask for data produced under that prefix
to the storage provider. The latter does not manage cleart-
ext data as devices only upload encrypted data. Therefore,
the storage provider does not carry out any policy enforce-
ment but simply forwards the ciphertexts to the requestor.
Finally the requestor holding the decryption key runs the
Decrypt algorithm and recovers the cleartext data. Note a
requestor may use the decryption key for a prefix (e.g.,
alice/home/) to decrypt ciphertexts produced by any de-
vice under that prefix (e.g., alice/home/thermostat or
alice/home/doorlock).

D. Security Analysis

In the two data sharing schemes (ACLs based and prefix
encryption based), a rational cloud policy decision point
cannot influence the consensus in the blockchain (i.e., the data
owner’s decision). Recall that the owners vote on access con-
trol decisions by issuing appropriate blockchain transactions.
Such transactions are confirmed in the blockchain by the val-
idators/miners. As required for the security of the underlying
blockchain, we assume the standard safety conditions partic-
ular to the underlying blockchain technology. For instance,
in Proof-of-Work (PoW) based blockchains (e.g., Bitcoin and
Ethereum), we assume that the adversary cannot control the
majority of the computing power in the network. Note that
the access control decisions made over the blockchain and
enforced the cloud PEP according to the user contract which
was previously agreed upon by all owners. These decisions

5If the authority is distributed, each peer receives a share of the master
secret key.

Blockchain
Channel

Blockchain
Handler

Router
Cloud

Storage
IoT

Stakeholder

...

...

...

NGSI-10

Rest API

Fabric CLI

Rest
API

Rest API

Fig. 3: Integration architecture.

are publicly verifiable and the cloud provider can be held
accountable for any diverging decisions.

Further, the blockchain ensures that all operations (i.e.,
data offers, offer accepts, ACL updates and changes to IOU
accounts) are auditable. The basic schemes of Section IV-C
ensure that access to data is correctly enforced—only parties
with an identity in the blockchain and that have paid the price
to access the data—assuming a trusted storage provider. The
scheme that uses prefix encryption can tolerate a malicious
storage provider and requires a trusted key distribution au-
thority. Nevertheless, the authority can be distributed across
several peers so that no data is leaked unless all peers are
malicious. We note that trivial DoS attacks—for example, the
storage provider may simply deny access to (encrypted) data—
are out of our scope.

E. Integration: Sash, FIWARE and Hyperledger Fabric

FIWARE, created in Europe from the Future Internet Public
Private Partnership (PPP), is an IoT open platform to provide
common APIs that ease the development of smart applications.
It allows to connect vendors, developers, and data providers
to collect, process and analyze context data at large scale.The
core of open FIWARE are generic enablers (GEs). A FIWARE
generic enabler is a set of general-purpose platform functions
available to application developers through APIs. FIWARE is a
cloud-based platform and consists of two main parts: IoT Edge
and IoT back-end. Operating on top of IoT back-end is Data
Context Broker component which is connected to applications.
IoT Edge supports IoT gateway and IoT NGSI 6 gateway for
NGSI-capable devices.

FIWARE includes following major entities: cloud which
refers to federation infrastructures to deploy GEs; data which
refers to context management platform and the integration of
data; IoT which refers to multiple protocols to plug and play
IoT devices; apps which to publish and visualize data; Web
UI is a support of UIs to represent context information; I2ND
which provides networking capabilities; and security which
provides built-in access/identity/privacy management.

6http://aeronbroker.github.io/Aeron/

Hyperledger Fabric (simply Fabric) is an open-source
blockchain platform [1] managed by the Linux Foundation 7.
Fabric has widely range of use in prototypes, proof-of-
concepts and industrial production. Use cases of Fabric include
various areas such as supply chain management, contract
management, data provenance, identity management.

Fabric uses hybrid replication design which incorporates
primary-backup (passive) replication and active replication.
Primary-backup replication in Fabric means every transaction
is executed only by a subset of peers based on endorsement
policies. Fabric adopts active replication that transactions are
written to the ledger once reaching consensus of total order.
This hybrid design makes Fabric a scalable permissioned
blockchain.

Sash includes five entities: IoT Domain which contains
IoT Stakeholder, Cloud Storage, Blockchain
and Key Authority (optional). We consider IoT
Domain as a virtual concept for a group of IoT
stakeholders that share common settings (e.g. located
in a same building, produce same type of context data). The
IoT Domain acts as a node that can be both data producer
and data consumer. It can be referred as IoT middleware
layer component which provides capabilities to connect to
further systems and applications that low-level IoT hardware-
based components lack of. Each IoT Domain maintains a
router to forward communications from IoT stakeholders to
further applications. Our extension is done by adding two
new handlers that we name Blockchain Handler and
Router. These additions come from the fact that components
are implemented in different languages following various
standards and thus these components cannot communicate
directly to each other. The hetogeneousity becomes even
larger when we consider various cloud providers which have
their own web APIs. Fig.3 gives an overview of components
and their interactions in Sash.

When IoT stakeholders connect to their IoT Domain router,
the router forwards the data stream to a right handler. That is,
when the message belongs to IoT data streams (files) types,
it is directed to the cloud storage. When the message belongs
to query types for retrieving data from the IoT to perform a
particular physical action by IoT stakeholders, it is forwarded
to the blockchain handler for verifying access permissions.
Here IoT domains join the blockchain network and query
ACLs for the requested data item. As we have introduced two
sharing schemes, the design of either having an ACL or a key
authority is adjustable in this integration. Similarly, whether or
not the cloud storage entity joins the blockchain network (data
marketplace) is also adjustable without any required changes
on the architecture of existing IoT platforms. We argue that
Sash can be integrated to other IoT platforms with proper
adjustments.

Communications (sending/receiving messages) between
components are mediated by handlers. An IoT Domain acts
as a node in the blockchain. The blockchain has one node

7https://www.hyperledger.org

that runs the web RESTful API and translates standard HTTP
(e.g. GET, POST) requests to queries to the smart contracts.
The replies from the contract are added to the HTTP response
body. Each node implements a router that interprets FIWARE
NGSI-10 requests and translates them into the commands that
the Web API the blockchain handler expects. In addition, this
service is also responsible for the communication with the
cloud via its web APIs. The blockchain handler is responsible
for all communications to the blockchain network via provided
APIs. We adopt the implementation of Hyperledger Fabric
and use its blockchain APIs e.g., Fabric CLI for connection
between blockchain handler and blockchain network.

V. IMPLEMENTATION & EVALUATION

A. Implementation Setup

In our implementation, the majority of the components were
developed using Golang as the programming language. We
implemented a smart contract to run the data sharing functions
described in Section IV. And we deployed this contract in a
Fabric network using Kafka as the consensus algorithm.

In our experiments, we evaluate the efficiency Sash fo-
cusing on two data-sharing schemes. The experimental setup
consists of a blockchain network built from HyperLedger
Fabric modules. This network has one ordering service and
five connecting peers. One of the peers runs the web API
for the entire blockchain network. Regarding the two sharing
schemes, we identify that the data size and the depth of the
encryption key (for the prefix encryption based scheme) will
affect the system’s performance. Our measuring metric is the
time it takes to commit the data to the network (for data
producers) and the time it takes to fetch the data from the
cloud (for consumers). The data is being sent from a machine
connected to the same network as the peer, and the cloud
service provider is mimicked by a key/value store database
hosted by the same machine as the peer.

For the key depth used in the prefix encryption based
scheme, we tested different depth levels from 1 to 6 and
there are no differences in performance besides experimental
noise. Thus we conclude that the performance of the prefix
encryption based scheme does not change with the key depths.

For the data size, we performed the aforementioned test
using data arrays that are of size 1, 5, 10 and 20 MB. For each,
we generated a random array of bytes and ran the queries to
submit and fetch the data from/to the system.

B. Evaluation Results

The experimental results (Fig.4) show that committing data
to the platform takes longer than fetching it. This can be
explained by the added complexity (number of smart contract
calls) of one action versus the other. In a real world deploy-
ment we speculate that the number of fetching actions will be
higher than that of commit actions, meaning that more users
will act as data consumers than as data producers. Therefore
mitigating the throughput gap between these two actions.

We can also see that, as expected, the time to perform any
of the evaluated actions increases in a quasi linear fraction

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
File size (MB)

0

2000

4000

6000

8000

Ti
m

e
(m

s)

commit data (ACL-based)
fetch data (ACL-based)
commit data (prefix encryption based)
fetch data (prefix encryption based)

Fig. 4: Performance results with variance of data sizes.

with the increase in the size of the data. This can clearly
be attributed to the time it takes for the data to travel
through the network. Furthermore, whilst the penalty from
using encryption is almost imperceptible for smaller data sizes
which becomes more impactful as the data size increases. We
argue that this is a worthwhile trade off given the benefits
brought by prefix encryption.

VI. RELATED WORK

Researchers have proposed the use of blockchain for various
IoT domains such as the Internet of healthcare things [6], the
Internet of vehicles [11], [16], the Internet of energy [12],
[13], and crowdsensing [4]. In [15] Wang et al., designed
and prototyped an edge IoT framework “EdgeChain” based on
permissioned blockchain and currency mechanism to manage
how much resource IoT devices can get from edge servers.
IoT industry players also have adopted blockchain and smart
contracts to build numerous applications (e.g. Slock.it 8 – a
German-based company that builds an application for renting,
sharing and selling without involvement of any trusted third
party; Ujo 9 uses blockchain to handle ownership rights such
that music owners get payment once their music is used for
commercial purpose).

Following the trend of leveraging blockchain for IoT, a
number of schemes for secure sharing of data over blockchains
have been explored by the researcher community [5], [9],
[17]. In [9] Kokoris-Kogias et al., proposed CALYPSO for
auditable sharing of private data where data is stored onchain
and collective authorities formed over the blockchain are
responsible for enforcing access control policies. This design
is not suitable for dealing with huge amount of IoT data gen-
erated by large numbers of IoT devices in real-world systems.
Shafagh et al., [17] designed a system for sharing time-series
IoT data where data owners have to issue transactions for

8https://slock.it/
9https://www.ujomusic.com/

setting policies each time the data is shared with another party
and only the owner can change that policy later. Similarly,
Laurent et al., [10] proposed a system where blockchain is
used to handle transactions between parties before granting
permissions, however how such transactions are done is not
addressed, and only owners can change policies. Our design
allows ACL updates or decryption key distributions to be
autonomously done over the blockchain back-end without
any data owner’s interventions. Owners only specify for data
offers, trading and granting are handled by the blockchain.

Data monetisation has been an active research topic [14],
[18], [19]. This trend is supported by the growth of machine
learning and smart technologies. It allows IoT devices and
systems to generate revenue from the data they produce.
In [19] Suliman et al., implemented Ethereum smart contracts
for monetizing IoT data. Shrestha and Vassileva [18] proposed
a framework for research data sharing that provides incentives
to data owners. Mylrea and Gourisetti [14] introduced applica-
tions of blockchain and smart contract for Energy-IoT data, to
enable trading energy data in smart grids. Even though these
works targeted monetisation in different IoT domains, they
all only focused on building mechanisms for rewarding data
owners. In Sash, in addition to providing “by design” data
owners rewards, we also integrate such data monetisation as a
part of data sharing schemes where access control policies and
key distribution are decided based on how trading transactions
have been completed.

VII. CONCLUDING REMARKS

We have presented Sash, the first secure and decentralized
IoT data-sharing framework over blockchains that provides
auditable access control policy updates and data owner re-
muneration. Sash achieves its goal by introducing three main
components in its design: a data marketplace and two sharing
schemes based on ACLs and prefix encryption. The data
marketplace allows a large number of data owners and con-
sumers to trade on IoT data. The two sharing schemes provide
different ways to grant access policies, one is based on ACLs
and the other is based on distribution of prefix decryption
keys. We have implemented Sash using open source platforms
FIWARE and Hyperledger Fabric and shown that open IoT
platforms can enhance their security by integrating Sash as
an extension. Initial performance evaluation results show a
moderate overhead.

In term of future work, we plan to apply Sash to allow for
validating global policies in the network. Namely, existing IoT
platforms feature a search engine that connects to multiple IoT
domains to index and crawl IoT data. These multiple domains
do not trust each other and yet need to agree on a set of policies
for sharing data indexed by the search engine. We believe that
Sash may find immediate applicability in this context.

ACKNOWLEDGMENT

This paper has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 779852.

REFERENCES

[1] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick.
Hyperledger fabric: A distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys Conference,
EuroSys ’18, pages 30:1–30:15, New York, NY, USA, 2018. ACM.

[2] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryp-
tion with constant size ciphertext. In Proceedings of the 24th Annual
International Conference on Theory and Applications of Cryptographic
Techniques, EUROCRYPT’05, pages 440–456, Berlin, Heidelberg, 2005.
Springer-Verlag.

[3] D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security
from identity-based encryption. SIAM J. Comput., 36(5):1301–1328,
Dec. 2006.

[4] D. Chatzopoulos, S. Gujar, B. Faltings, and P. Hui. Privacy Preserving
and Cost Optimal Mobile Crowdsensing using Smart Contracts on
Blockchain. ArXiv e-prints, Aug. 2018.

[5] K. Christidis and M. Devetsikiotis. Blockchains and smart contracts for
the internet of things. IEEE Access, 4:2292–2303, 2016.

[6] C. Esposito, A. D. Santis, G. Tortora, H. Chang, and K. R. Choo.
Blockchain: A panacea for healthcare cloud-based data security and
privacy? IEEE Cloud Computing, 5(1):31–37, Jan./Feb. 2018.

[7] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren. Searching
an encrypted cloud meets blockchain: A decentralized, reliable and fair
realization. In IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, pages 792–800, April 2018.

[8] N. Kaaniche and M. Laurent. A blockchain-based data usage auditing
architecture with enhanced privacy and availability. In 2017 IEEE
16th International Symposium on Network Computing and Applications
(NCA), pages 1–5, Oct 2017.

[9] E. Kokoris-Kogias, E. C. Alp, S. D. Siby, N. Gailly, L. Gasser,
P. Jovanovic, E. Syta, and B. Ford. Calypso: Auditable sharing of private
data over blockchains. Cryptology ePrint Archive, Report 2018/209,
2018. https://eprint.iacr.org/2018/209.

[10] M. Laurent, N. Kaaniche, C.-Y. Le, and M. V. Plaetse. An access control
scheme based on blockchain technology. 2018.

[11] A. Lei, H. Cruickshank, Y. Cao, C. P. Anyigor Ogah, P. Asuquo, and
Z. Sun. Blockchain-based dynamic key management for heterogeneous
intelligent transportation systems. PP, 08 2017.

[12] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang. Consortium
blockchain for secure energy trading in industrial internet of things.
IEEE Transactions on Industrial Informatics, 14(8):3690–3700, Aug
2018.

[13] G. Liang, S. R. Weller, F. Luo, J. Zhao, and Z. Y. Dong. Distributed
blockchain-based data protection framework for modern power systems
against cyber attacks. IEEE Transactions on Smart Grid, pages 1–1,
2018.

[14] M. Mylrea and S. N. G. Gourisetti. Blockchain for smart grid resilience:
Exchanging distributed energy at speed, scale and security. In 2017
Resilience Week (RWS), pages 18–23, Sep. 2017.

[15] J. Pan, J. Wang, A. Hester, I. Alqerm, Y. Liu, and Y. Zhao. EdgeChain:
An Edge-IoT Framework and Prototype Based on Blockchain and Smart
Contracts. ArXiv e-prints, June 2018.

[16] C. Qiu, F. R. Yu, F. Xu, H. Yao, and C. Zhao. Blockchain-based
distributed software-defined vehicular networks via deep q-learning. In
Proceedings of the 8th ACM Symposium on Design and Analysis of
Intelligent Vehicular Networks and Applications, DIVANet’18, pages 8–
14, New York, NY, USA, 2018. ACM.

[17] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy. Towards
blockchain-based auditable storage and sharing of iot data. In Proceed-
ings of the 2017 on Cloud Computing Security Workshop, CCSW ’17,
pages 45–50, New York, NY, USA, 2017. ACM.

[18] A. Shrestha and J. Vassileva. Blockchain-Based Research Data Sharing
Framework for Incentivizing the Data Owners, pages 259–266. 06 2018.

[19] A. Suliman, Z. Husain, M. Abououf, M. Alblooshi, and K. Salah.
Monetization of iot data using smart contracts. IET Networks, 8:32–
37(5), January 2019.

[20] A. Yakubov, W. M. Shbair, A. Wallbom, D. Sanda, and R. State. A
blockchain-based pki management framework. In NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, pages 1–
6, April 2018.

