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Abstract
We propose two new methods for identifying simi-
larity and anomalies among collections of time se-
ries, and apply these methods to analyse cryptocur-
rencies. First, we analyse change points with respect
to various distribution moments, considering these
points as signals of erratic behaviour and potential
risk. This technique uses the MJ1 semi-metric, from
the more general MJp class of semi-metrics [James
et al., 2019], to measure distance between these
change point sets. Prior work on this topic fails to
consider data between change points, and in par-
ticular, does not justify the utility of this change
point analysis. Therefore, we introduce a second
method to determine similarity between time series,
in this instance with respect to their extreme values,
or tail behaviour. Finally, we measure the consis-
tency between our two methods, that is, structural
break versus tail behaviour similarity. With cryp-
tocurrency investment as an apt example of erratic,
extreme behaviour, we notice an impressive consis-
tency between these two methods.

1 Introduction
The cryptocurrency market is in its relative infancy, and is
characterised by large price fluctuations, significant volatility,
and a high degree of similarity in movement. Given cryptocur-
rencies’ technological grounding, it has been of great interest
to the field of computer science and quite naturally, machine
learning researchers have been eager to conduct research in
the field. Large investment groups tend to dominate prominent
and highly liquid exchange-traded financial products such as
equity markets, fixed income markets, equity and fixed in-
come indices, many derivative markets etc. These investment
groups often marry their investment processes with underlying
econometric and financial theory, enforcing efficient markets-
type thinking. There has been reluctance from many large
and established investment managers to invest in cryptocurren-
cies. Accordingly, retail investors and less procedural investors
make up a larger proportion of the cryptocurrency market. The
cryptocurrency market is possibly the best representation of
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crowd behaviour and the associated chaos within financial
markets.

There is significant literature studying the variance of
cryptocurrencies. Most research has focused on applying
ARCH and GARCH-style models, stochastic volatility
and CARR models to model the volatility of individual
cryptocurrencies, such as in [Katsiampa, 2017; Chu et al.,
2017] and others. Despite the highly non-stationary behaviour
that cryptocurrencies often exhibit, these models do not
segment the time series into locally stationary segments.
While [Phillip et al., 2019] apply a buffer threshold model
with different forward and backward change points, they
consider one cryptocurrency at a time rather than changes
across cryptocurrencies.

[Hawkins, 1977], and later [Hawkins et al., 2003; Hawkins
and Zamba, 2005; Hawkins and Deng, 2010] introduced
change point models, a developing field of algorithms
designed to break time series into locally stationary segments,
where each segment is governed by a separate probability
distribution function. Since then, the work has been extended
by several authors, most significantly Ross et al. [Ross and
Adams, 2011, 2012; Ross et al., 2011]. These methods were
importantly consolidated by [Ross, 2015], where software
was designed to easily apply these change point algorithms to
various time series. In this paper, we apply the Mann-Whitney
test [Ross, 2015; Pettitt, 1979] as one of the methods to detect
change points in cryptocurrency log returns and variance.

[James et al., 2019] apply semi-metrics, a recent devel-
opment of the field of metric spaces, to evaluate distances
between sets of change points and determine similarity in
structural breaks for a collection of time series. Metric spaces
are fundamental in mathematics, and have been used to
measure distances between finite sets of points for several
years. The most commonly used of these is the Hausdorff
metric, used by [Atallah et al., 1991; Barton et al., 2010] and
others. The Hausdorff metric has a flaw - its sensitivity to
outliers - discussed in [Baddeley, 1992]. Improvements in
this sensitivity can be provided by the use of semi-metrics,
which sacrifice the triangle inequality property of a metric.
Semi-metrics have been used in various applications where
a distance is needed, such as [Jacobs et al., 2000] and
[Rucklidge, 1996].
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This paper proposes two new approaches to the cryptocur-
rency literature. We use first the MJp family of semi-metrics
and second a modified Wasserstein metric procedure, rather
than classical time series models, to uncover patterns within
large collections of time series. The methods we apply are flex-
ible, and may build upon any underlying criteria for change
point identification. There is also flexibility to use other dis-
tances explored in [James et al., 2019] such as the MJ0.5 and
MJ2 distances, or to modify the proportion of the tail we
extract for the second method.

2 An algorithm for similarity and anomaly
identification

2.1 Generating the distance matrix
Given a collection of time series indexed by days, we apply the
two phase change point detection algorithm detailed by [Ross,
2015] to generate sets of change points. This algorithm may
be modified by choosing different threshold levels appropriate
for the context. Then, we apply the MJ1 distance of [James
et al., 2019] between sets of change points. This distance
calculates the L1 norm average of all the minimum distances
from a set S to a set T and from T to S, that is,

D1(S, T ) =
1

2

(∑
t∈T d(t, S)

|T |
+

∑
s∈S d(s, T )

|S|

)
(1)

where d(t, S) is the distance from a point t to a set S.
Given n time series, extract their change point sets

S1, ..., Sn. Then form the distance matrix
Dij = D1(Si, Sj), i, j = 1, ..., n.

2.2 Analysing the distance matrix
We propose three ways of analysing this matrix of distances
between time series. First, one can extract, order and plot
the absolute values of the eigenvalues |λ1| < ... < |λn|. For
both the log returns and variance time series, if many eigen-
values are relatively close to zero, relative to normalisation
by the length of the total time period, one may conclude that
correspondingly many of the time series are highly similar.

The second approach is hierarchical clustering on the dis-
tance matrix, which allows us to see which time series are
most similar based on the MJ1 semi-metric. This method pro-
duces easy to interpret dendrograms, seen in Figures 7c and
8c below.

The third approach uses spectral clustering on the graph
Laplacian matrix to aid in detecting groups of similarity, as
well as anomalies. The distance matrix D is transformed into
an affinity matrix A as follows:

Aij = 1− Dij

maxk,l{Dkl}
(2)

The graph Laplacian matrix is given by:

L = E −A, (3)

where E is the diagonal degree matrix with Eii =
∑

j Aij .
The eigenvectors of the graph Laplacian are then clustered

using a standard algorithm such as K-means.

Transitivity preservation
Unlike metrics, semi-metrics may not satisfy the triangle in-
equality. This presents a theoretical problem: d(S, T ) and
d(T,R) could both be small, while d(S,R) could be large.
Under the semi-metric, S would then be close to T , and T
close to R, but S not close to R; transitivity of proximity
may not be preserved and our semi-metric would not be an
appropriate distance measure. To address this concern, we
generate a three dimensional matrix to test whether the triangle
inequality is satisfied for all possible triples, and to show that
our measure is reliably transitive. The matrix is coloured as
follows:

Ti,j,k =


blue , D(i,k)

D(i,j)+D(j,k) ≤ 1

yellow , 1 < D(i,k)
D(i,j)+D(j,k) ≤ 2

red, else

(4)

If T is overwhelmingly blue and yellow, our metric is vio-
lating the triangle inequality infrequently and mildly, so that it
still respects the transitivity property of proximity.

3 Modelling distributional extremities
In this section we seek to do the following:

1. Highlight similarity and anomalies between cryptocur-
rencies with respect to their tail behaviour.

2. Restrict our attention to the top and bottom 5% of the
log returns, and examine the associated restricted distri-
bution. Cryptocurrencies may have different behaviour
in extreme circumstances.

3. Compute distance between these restricted distributions
using the Wasserstein distance. These distances are stored
in a new distance matrix. We show that Tether is anoma-
lous with respect to tail behaviour.

4. Examine differences between the change point and tail
distance matrices. Hence, determine cryptocurrencies
which are anomalous with respect to the consistency be-
tween structural breaks and tail behaviour. That is, inves-
tigate which, if any, cryptocurrencies are distinguishing
themselves from the rest of the collection in only one of
change point behaviour, or tail behaviour, but not both,

5. Thus, develop a method which determines changes in
structural breaks in mean, variance, etc, but that can also
differentiate extreme behaviours, akin to characteristics
such as skew and kurtosis. Finally, compare anomalies
with respect to structural breaks and tail distribution with
a so-called consistency matrix.

3.1 Generating bi-modal tail distribution
In this section we describe the mathematical procedure out-
lined above. Begin with a continuous probability measure
µ = f(x)dx, where dx is Lebesgue measure, and f(x) a
probability density function. As such, f(x) is non-negative ev-
erywhere with integral 1. We first extract the points of density
5% and 95% respectively by the equations∫ s

−∞
f(x)dx = 0.05 (5)



(a) Bitcoin tail distribution (b) Litecoin tail distribution

(c) Tether tail distribution (d) Monero tail distribution

Figure 1: Distribution of extreme values for cryptocurrency log
returns

∫ ∞
t

f(x)dx = 0.05 (6)

The left tail is then given by x ≤ s, while the right is given
by x ≥ t. Next form the restricted function by

g(x) = f(x)1{x≤s}∪{x≥t} =


f(x), x ≤ s
0, s < x < t

f(x), x ≥ t

Above, 1 denotes an indicator function of a set; this con-
struction essentially truncates f only in its tail range.

Next, we form the associated Radon-Nikodym measure
ν = g(x)dx where dx is Lebesgue measure.

Now suppose we are given n probability measures associ-
ated to n cryptocurrencies, µ1, ..., µn. Form the corresponding
restricted measures ν1, ..., νn, compute the Wasserstein dis-
tances dW (νi, νj) between them, and record these in a matrix
DW

ij = dw(νi, νj).
This procedure works even more simply for a discrete dis-

tribution, given by a finite data set, for instance. One simply
forms the empirical distribution function, then removes the
middle 90% of the values by order.

Finally, for representational convenience we include the
kernel destiny estimation plots in Figure 1.

3.2 Distance between extreme behaviours
In Figure 2a, we depict on a dendrogram these Wasserstein
distances between the restricted measures. This captures the
similarity between the tail behaviour (top and bottom 5%)
of these cryptocurrencies. We can see that Tether has a very
different tail distribution. This is confirmed by Figure 1c
above. The distribution is much more narrow, seen by limited
range on the x-axis compared to Figures 1a, 1b and 1d. We
are likely detecting significantly less kurtosis.

(a) Distance between distributional extremities

Figure 2: Wasserstein distance between tail behaviour distributions

3.3 Consistency between change point and tail
distances

In [James et al., 2019], James et al. imply, but do not explicitly
discuss, that change points may constitute a representation
of extreme behaviour. After all, a random variable or real
world quantity changing its statistical properties represents an
erratic event. Extending this idea, we explicitly examine the
connection and consistency between structural break and tail
behaviour distance analysis. Using semi-metrics or metrics to
differentiate cryptocurrencies based on these two attributes
serves a similar purpose: to interpret similarity and anomalies
based on extreme or erratic behaviour.

To perform this analysis, we form both distance matrices
DW from section 3.1 and DMJ from 2.1, and transform each
into an affinity matrix AW and AMJ according to the proce-
dure in equation 2. All elements of these affinity matrices lie
in [0, 1] so it is appropriate to compare them directly by taking
their difference

C = AMJ −AW (7)

Term this the consistency matrix between structural breaks
and tail behaviour. A heat map of this matrix is depicted in
Figure 4.

Finally, we perform hierarchical clustering on this consis-
tency matrix to determine if there are any anomalies. Results
are displayed in Figure 6a.

4 Experiments and results
We run two cryptocurrency experiments, analysing log returns
and variance for 22 cryptocurrencies. In each experiment,
the Mann-Whitney test is applied to identify the number and



Figure 3: MJ1 affinity matrix

Figure 4: Consistency between structural breaks and tail behaviour

(a) Tether log returns vs time (b) Monero log returns vs time

(c) Tether tail distribution (d) Monero tail distribution

Figure 5: Tether log returns, Monero log returns, Tether distribution,
Monero Distribution

(a) Consistency between structural breaks and tail behaviour

Figure 6: Hierarchical clustering on difference between affinity
matrices- consistency matrix - for distance between structural breaks
and distance between tail distributions



locations of change points, and the respective distance matrix
is analysed with our three methods.

The data we analyse is taken from Coinmarketcap. Among
the 30 largest cryptocurrencies by market capitalisation, we
include only those with price histories which go as far back
as 01-01-2018. Twenty-two cryptocurrencies remain in our
collection. We analyse the daily log returns and Parkinson
range variance measures of these cryptocurrencies between
01-01-2018 and 19-11-2019, a period of 688 days. Log returns
are calculated by Rt = log( Pt

Pt−1
) and the Parkinson range

variance is calculated as, σ2
t = (logHt−logLt)

2

4 log 2 . Finally, we
extract the bi-modal tail distributions according to the proce-
dure of section 3.1, and analyse the consistency with change
points as described in section 3.3.

Similarity in log returns structural breaks
The first experiment determines the similarity between cryp-
tocurrencies with respect to change points in the log returns
series. Figure 7a demonstrates there is a high degree of similar-
ity in the returns of the cryptocurrency market. Approximately
16 eigenvalues are less than 200 in absolute value, small rela-
tive to the total time period of 688 days. It is clear from this
plot that there are at least two outliers, with eigenvalues well
outside the typical range for the time series collection.

The distance matrix’s dendrogram in Figure 7c demon-
strates that there is one cluster of broad similarity, and sev-
eral outliers, including Tether and Monero. Within the large
cluster of similar cryptocurrencies, there are sub-clusters of
highly similar cryptocurrencies. There are approximately 4
sub-clusters of extreme similarity around the matrix diagonal.
Both Tether and Monero are identified as dissimilar to most
cryptocurrencies, however they are determined to be similar
to each other. In fact, the truth is even starker than the den-
drogram reveals: both Tether and Monero have an empty set
of change points, and hence the MJ1 distance between these
sets is trivially 0. An empty set of change points means their
log returns are determined by the algorithm to be governed by
the same probability distribution for the entire period. Indeed,
one can see this in Figures 5a and 5b. The lack of any change
points is strikingly different to the rest of the collection. This
is an important insight, highlighting that there may be similar-
ity among cryptocurrencies anomalous from the majority of
the collection.

The third method, spectral clustering, algorithmically agrees
with hierarchical clustering, and shows that there are two
clusters within the data, one containing Tether and Monero,
and one containing all others.

Similarity in variance structural breaks
The second experiment determines the similarity between
cryptocurrencies with respect to change points in the time
series’ variance.

An analysis of the distance matrix indicates more inherent
similarity with respect to structural breaks in the variance than
for the log returns. Figure 8a shows that all eigenvalues are
less than 160, even smaller with respect to the time period of
688 days; in Figure 7a, one eigenvalue was as high as 1400.
The dendrogram in Figure 8c has two key insights.

(a) Eigenvalue plot (b) Transitivity plot

(c) Dendrogram plot

Figure 7: Results of distance matrix analyses for change points
identified using Mann-Whitney test applied to cryptocurrency log
returns

(a) Eigenvalue plot (b) Transitivity plot

(c) Dendrogram plot

Figure 8: Results of distance matrix analyses for change points iden-
tified using Mann-Whitney test applied to cryptocurrency variance



Figure 9: Log returns and Parkinson daily variance for Monero and
Ripple. x axis represents time. Plots 1 and 2 display Parkinson daily
variance measure with change points for Monero and Ripple; plots 3
and 4 display log returns with change points for Monero and Ripple.
The structural breaks are more frequent, and more similar in the
variance time series.

First, the scale of the dendrogram in Figure 8c is 20 times
smaller than that of Figure 7c, suggesting that anomalies are
far less significant when determining structural breaks in vari-
ance. Second, although the general degree of similarity is
much higher between change points in the variance, the pat-
tern of highly similar clusters of cryptocurrencies grouping
around the diagonal has disappeared. Given the 20 fold dif-
ference in scale, the proper interpretation of this is that all
22 cryptocurrencies form one cluster. Hierarchical clustering
indicates essentially all 22 cryptocurrencies have very similar
structural breaks in variance. Spectral clustering indicates
that there are three clusters of cryptocurrencies. One cluster
contains Chainlink, another contains Basic Attention and the
third cluster contains the remainder of the cryptocurrencies.

In Figure 9, we illustrate the distinct differences in similar-
ity between the structural breaks of log returns and variance
between two cryptocurrencies, Monero and Ripple. These
were identified as highly similar with respect to variance, but
reasonably dissimilar in log returns. Plots 1 and 2 in Figure
9 display a high degree of similarity in the structural breaks
corresponding to variance. On the other hand, plots 3 and 4
in Figure 9 show that the log returns display significantly less
similar patterns with respect to structural breaks. These results
further confirm the ability of the semi-metric MJ1 to identify
anomalous patterns within the cryptocurrency market. This
could provide insights for trading ideas and decision support
in asset allocation decisions for portfolios of cryptocurren-
cies and multi-asset portfolios that contain cryptocurrencies.
This analysis also highlights that the cryptocurrency market
may provide exposure to highly correlated investment risk,
as the variance of most cryptocurrencies exhibits pronounced
synchronicity.

Consistency between structural break and tail
distribution analysis

In this section, we compare and contrast the structural breaks
and tail distributions of the log returns of our collection of
cryptocurrencies. We form the consistency matrix described in
section 3.3, depicted in Figure 4 and analyse the hierarchical
clustering in Figure 6a.

In interpreting these, pay close attention to both Tether and
Monero. Recall each of these cryptocurrencies is determined
by our algorithm to have an empty set of change points. One
can see this regularity of returns with time in Figures 5a and 5b.
As such, their MJ distance between their change points is 0,
and they form their own anomalous cluster in Figure 7c. That
is, in change point analysis, Tether and Monero are the two
anomalies. On the other hand, with respect to tail distributions,
Tether is the only anomalous cryptocurrency, as seen in Figure
1c. Monero is rather similar to other cryptocurrencies in terms
of tail distribution.

And fittingly, it is only Monero which is identified as anoma-
lous in terms of inconsistencies between tail behaviour and
structural breaks. That is, it is the unique cryptocurrency for
which the tail distribution and structural break analysis are
yielding different results. This supports our interest in the
distance between change point sets as a measure of distance
between random variables based on their extreme and erratic
behaviour.

5 Conclusion

We use the MJ1 semi-metric to measure similarity between 22
cryptocurrencies, according to the change points of log returns
and variance. We also compare the consistency between our
change point analysis and a tail distribution analysis.

Our analysis of distance matrices suggests that the cryp-
tocurrency market is highly similar with respect to structural
breaks in both log returns and variance, but anomalous be-
haviour is more profound in log returns than variance. Sub-
clustering according to change points of cryptocurrency re-
turns suggests that members within each sub-cluster should
not appear together in a portfolio to minimise risk. Identify-
ing these clusters may also provide investment opportunities
within the cryptocurrency market; in particular, analysing clus-
ters holistically may provide opportunities for pairs trading.
On the other hand, change points of cryptocurrency variance
form essentially one cluster that covers the entire market. The
extraordinary similarity of the variance among the cryptocur-
rency market agrees with previous findings that the cryptocur-
rency market is highly volatile and risky.

Reduction of such extraordinary volatility is among the
highest priorities for investors in the cryptocurrency market.
We have analysed change points, which can herald erratic be-
haviour, and the tail end distributions, which control extreme
behaviour. Our two methods to monitor similarity and anoma-
lies may provide new insights in the reduction of risk. Their
significant consistency means they will not provide contradic-
tory recommendations, and together they could offer unique
insights that one method alone could miss.



References
M. J. Atallah, C. C. Ribeiro, and S. Lifischitz. Computing

some distance functions between polygons. Pattern Recog-
nition, 24:775–781, 1991.

A. J. Baddeley. Errors in binary images and an Lp version of
the Hausdorff metric. Nieuw Arch. Wisk, 10:157–183, 1992.

M. Barton, I. Hanniel, G. Elber, and M. S. Kim. Precise
Hausdorff distance computation between polygonal meshes.
Comput. Aided Geom. Design, 27:580–591, 2010.

J. Chu, S. Chen, S. Nadarajah, and J. Osterrieder. GARCH
modelling of cryptocurrencies. Journal of Risk and Finan-
cial Management, 4:10:17, 2017.

D. M. Hawkins and Q. Deng. A nonparametric change-point
control chart. Journal of Quality Technology, 42:165–173,
2010.

D. M. Hawkins and K. D. Zamba. Statistical process control
for shifts in mean or variance using a changepoint formula-
tion. Technometrics, 47:164–173, 2005.

D. M. Hawkins, P. H. Qiu, and C. W. Kang. A change-point
model for a shift in variance. Journal of Quality Technology,
42:355–366, 2003.

D. M. Hawkins. Testing a sequence of observations for a shift
in location. Journal of the American Statistical Association,
72:180–186, 1977.

D. W. Jacobs, D. Weinshall, and Y. Gdalyahu. Classifica-
tion with nonmetric distances: image retrieval and class
representation. IEEE Trans. Pattern Anal. Mach. Intell.,
22:583–600, 2000.

N. James, M. Menzies, L. Azizi, and J. Chan. Novel semi-
metrics for multivariate change point analysis and anomaly
detection. arXiv e-prints, page arXiv:1911.00995, 2019.

P. Katsiampa. Volatility estimation for Bitcoin: A comparison
of GARCH models. Economics Letters, 158:3–6, 2017.

A. N. Pettitt. A non-parametric approach to the change-point
problem. Journal of the Royal Statistical Society. Series C,
28:126–135, 1979.

A. Phillip, J. S. K. Chan, and M. S. Peiris. On long memory ef-
fects in the volatility measure of cryptocurrencies. Finance
Research Letters - to appear, 2019.

G. J. Ross and N. M. Adams. Sequential monitoring of a
Bernoulli sequence: when the pre-change parameter is un-
known. Computational Statistics, 28:463–479, 2011.

G. J. Ross and N. M. Adams. Two nonparametric control
charts for detecting arbitrary distribution changes. Journal
of Quality Technology, 44:102–116, 2012.

G. J. Ross, D. K. Tasoulis, and N. M. Adams. Nonparametric
monitoring of data streams for changes in location and scale.
Technometrics, 53:379–389, 2011.

G. J. Ross. Parametric and nonparametric sequential change
detection in R: the cpm package. Journal of Statistical
Software, Articles, 66(3):1–20, 2015.

W. J. Rucklidge. Efficient visual recognition using Hausdorff
distance. Springer, 1996.


	1 Introduction
	2 An algorithm for similarity and anomaly identification
	2.1 Generating the distance matrix
	2.2 Analysing the distance matrix
	Transitivity preservation


	3 Modelling distributional extremities
	3.1 Generating bi-modal tail distribution
	3.2 Distance between extreme behaviours
	3.3 Consistency between change point and tail distances

	4 Experiments and results
	Similarity in log returns structural breaks
	Similarity in variance structural breaks
	Consistency between structural break and tail distribution analysis


	5 Conclusion

